K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

a/ Cái đầu tiên vô nghiệm rồi :v

b/ \(\Leftrightarrow\left(5\sin x\right)^2+5.3.2\sin x\cos x+\left(3\cos x\right)^2=25\)

\(\Leftrightarrow\left(5\sin x+3\cos x\right)^2=25\Leftrightarrow\left[{}\begin{matrix}5\sin x+3\cos x=5\\5\sin x+3\cos x=-5\end{matrix}\right.\)

Xét \(5\sin x+3\cos x=5\)

\(\cos\frac{x}{2}=0\Rightarrow x=\pi+k2\pi\)

\(\cos\frac{x}{2}\ne0\Leftrightarrow x\ne\pi+k2\pi\)

Đặt \(t=\tan\frac{x}{2}\Rightarrow\left\{{}\begin{matrix}\sin x=\frac{2t}{1+t^2}\\\cos x=\frac{1-t^2}{1+t^2}\end{matrix}\right.\)

\(\Rightarrow5\frac{2t}{1+t^2}+3.\frac{1-t^2}{1+t^2}=5\)

\(\Leftrightarrow8t^2-10t+2=0\) <tự giải nha, trường hợp 2 tương tự :)>

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Câu 1:

Ta có:

$x^2+x+1=\sin x\leq 1$

$\Leftrightarrow x(x+1)\leq 0$

$\Leftrightarrow -1\leq x\leq 0$

Với $x\in [-1;0]$ thì hàm $\sin x$ là hàm đồng biến. Do đó:

$\sin x\leq \sin (0)=0(*)$

Mà theo đề bài:

$\sin x=x^2+x+1=(x^2+x+\frac{1}{4})+\frac{3}{4}=(x+\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$ (mâu thuẫn với $(*)$)

Vậy PT vô nghiệm.

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Câu 2:

PT $\Leftrightarrow x^2-2x\sin x+\sin ^2x-\sin ^2x-2\cos x+2=0$

$\Leftrightarrow (x^2-2x\sin x+\sin ^2x)+(\cos ^2x-1-2\cos x+2)=0$

$\Leftrightarrow (x-\sin x)^2+(\cos x-1)^2=0$

$\Rightarrow x-\sin x=\cos x-1=0$

$\Leftrightarrow x=\sin x; \cos x=1$

$\Rightarrow x=0$

1 tháng 8 2018

1/ \(pt\Leftrightarrow\left(3cos^2x-sin^2x\right)\left(cos^2x-sin^2x\right)=0\)

\(\Leftrightarrow\left(\dfrac{3}{2}\left(1+cos2x\right)-\dfrac{1}{2}\left(1-cos2x\right)\right)\left(\dfrac{1}{2}\left(1+cos2x\right)-\dfrac{1}{2}\left(1-cos2x\right)\right)=0\)

\(\Leftrightarrow\left(2cos2x+1\right)cos2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)

2/ \(pt\Leftrightarrow\left(sinx-1\right)\left(sin^2x+sinx+6\right)=0\)

\(\Leftrightarrow sinx=1\)

3/ \(pt\Leftrightarrow\dfrac{1-cos2x}{2}-4sin2x+\dfrac{7}{2}\left(1+cos2x\right)=0\)

\(\Leftrightarrow3cos2x-4sin2x=-4\)

\(\Leftrightarrow5\left(\dfrac{3}{5}cos2x-\dfrac{4}{5}sin2x\right)=-4\)

\(\Leftrightarrow cos\left(2x+arccos\dfrac{3}{5}\right)=-\dfrac{4}{5}\)

4,5 giải tương tự câu 3

NV
18 tháng 8 2020

c/

\(\Leftrightarrow1-cos^2\frac{x}{2}-2cos\frac{x}{2}+2=0\)

\(\Leftrightarrow cos^2\frac{x}{2}+2cos\frac{x}{2}-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\frac{x}{2}=1\\cos\frac{x}{2}=-3< -1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\frac{x}{2}=k2\pi\)

\(\Leftrightarrow x=k4\pi\)

d/ ĐKXĐ: ...

\(\Leftrightarrow tanx-\frac{2}{tanx}+1=0\)

\(\Leftrightarrow tan^2x+tanx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-2\right)+k\pi\end{matrix}\right.\)

NV
18 tháng 8 2020

a/

\(\Leftrightarrow\left(cosx-1\right)\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

b \(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)

\(\Leftrightarrow2sin2x\left(1+\sqrt{2}cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\cos2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\2x=\pm\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\pm\frac{3\pi}{8}+k\pi\end{matrix}\right.\)

3 tháng 8 2017

Năm nay bạn lên 11 à, nếu đúng chắc bạn đang tự học phải không?

a) Bạn dùng máy tính (mode 5 3 rồi bấm 3= 1= =) máy hiện ra 2 nghiệm

x=-1/3 và x=0 (nghiệm x chính là cosx đó)

x=-1/3 (hơi lẻ đó)<=>cosx=-1/3 <=> x= (+) (-) arc cos(-1/3)+k2\(\Pi\) (k\(\in\)Z) (arc cos(-1/3) = SHIFT COS trong máy tính)

x=0<=> cosx=0<=> x=\(\dfrac{\Pi}{2}\)+l\(\Pi\) (l\(\in\)Z)

b) Bạn dùng công thức cos2x=2cos2x-1 là ra ngay thôi mà!

pt<=>cos2x+(2cos2x-1)2=0

<=>cos2x+4cos4x-4cos2x+1=0

<=>4cos4x-3cos2x+1=0 (pt vô nghiệm, thốn vl) chắc đề sai hay gì đó bạn ơi, thường người ta ít cho vô nghiệm lắm!

c) Đặt t=sinx+cosx =>t2=sin2x+cos2x+2sinxcosx=1+2sinxcosx<=>2sinxcosx=t2-1

PT trở thành:

t+t2-1=0<=>\(\left[{}\begin{matrix}t1=\dfrac{-1+\sqrt{5}}{2}\\t2=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}six+cosx=t1\\sinx+cosx=t2\end{matrix}\right.\)

Mà sinxx+ cosx=\(\sqrt{2}\) sin(x+\(\dfrac{\Pi}{4}\)) ct ày không biết bạn học chưa nhưng nó sử dụng rất nhiều đấy cố mà nhớ nhé!

1) sin(x+pi/4)=\(\dfrac{\sqrt{10}-\sqrt{2}}{4}\)=A<=>x=arc sinA-pi/4+k2pi (k thuộc Z) hoặc x=pi-arc sinA-pi/4+k2pi

2) sin(x+pi/4)=\(\dfrac{-\sqrt{10}-\sqrt{2}}{4}\)=B<=>x=......... như trên vậy đó hihi!

d)ĐIều kiện: cosx khác 0 <=> x\(\ne\)pi/2+kpi và cos2x khác 0<=> x \(\ne\)\(\dfrac{\Pi}{4}\)+kpi/2

pt<=>\(\dfrac{sinx}{cosx}\)+\(\dfrac{sin2x}{cos2x}\)=0

<=>sinx.cos2x+sin2x.cosx=0

<=>sinx.cos2x+2sinx.cos2x=0 (sin2x=2sinx.cosx)

<=>sinx(cos2x+2cos2x)=0

<=>sinx(2cos2x-1+2cos2x)=0

<=>sinx(4cos2x-1)=0

1) sinx=0<=>x=kpi (nhận)

2)4cos2x-1=0<=>cosx=1/2<=>x=+ - pi/3+k2pi Hoặc cosx=-1/2

<=>x= + - 2pi/3+kpi(nhận)

Chúc bạn học tốt !

4 tháng 8 2017

À quên câu c) thiếu điều kiện của t rồi

\(-\sqrt{2}\le t\le\sqrt{2}\)

20 tháng 8 2018

\(-1\le cosx\le1\) nên \(0\le cosx+1\le2\)

NV
6 tháng 9 2020

\(y=3\left(cosx-\frac{1}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)

\(y_{min}=\frac{8}{3}\) khi \(cosx=\frac{1}{3}\)

\(y=8+\left(3cos^2x-2cosx-5\right)=8+\left(cosx+1\right)\left(3cosx-5\right)\le8\)

\(y_{max}=8\) khi \(cosx=-1\)

NV
18 tháng 10 2020

e.

\(3\left(1-sin^2x\right)-5sinx-1=0\)

\(\Leftrightarrow-3sin^2x-5sinx+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{3}\\sinx=-2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

f.

\(2\left(2cos^2x-1\right)-cosx+7=0\)

\(\Leftrightarrow4cos^2x-cosx+5=0\)

Phương trình vô nghiệm

NV
18 tháng 10 2020

g.

\(\Leftrightarrow\sqrt{2}sin\left(4x+\frac{\pi}{4}\right)=2\)

\(\Leftrightarrow sin\left(4x+\frac{\pi}{4}\right)=\sqrt{2}>1\)

Phương trình vô nghiệm

h.

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{6}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)