Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{2^{ }}+2\left(m-1\right)x-6m-7=0\left(1\right)\)
a) \(Dental=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-6m-7\right)\)
\(< =>4\cdot\left(m^2-2m+1\right)+24m+28\)
\(< =>4m^2-8m+4+24m+28\)
\(< =>4m^2+16m+32\)
\(< =>\left(2m+4\right)^2+16>0\) với mọi m
Vậy phương (1) luôn có 2 nghiệm phân biệt với mọi m
b) Theo định lí vi ét ta có:
x1+x2= \(\dfrac{-2\left(m-1\right)}{1}=-2m+1\)
x1x2= \(-6m-7\)
quy đồng
khử mẫu
tách sao cho có tích và tổng
thay x1x2 x1+x2
kết luận
mặt xấu vl . . .
a: Thay m=1 vào pt, ta được:
\(x^2-x=0\)
=>x(x-1)=0
=>x=0 hoặc x=1
b: \(\Delta=\left(2m-1\right)^2-4m\left(m-1\right)\)
\(=4m^2-4m+1-4m^2+4m=1>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
`1)` Ptr có: `\Delta=3^2-4.5.(-1)=29 > 0 =>`Ptr có `2` nghiệm phân biệt
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-3/5),(x_1.x_2=c/a=-1/5):}`
Có: `A=(3x_1+2x_2)(3x_2+x_1)`
`A=9x_1x_2+3x_1 ^2+6x_2 ^2+2x_1x_2`
`A=8x_1x_2+3(x_1+x_2)^2=8.(-1/5)+3.(-3/5)^2=-13/25`
Vậy `A=-13/25`
____________________________________________________
`2)` Ptr có: `\Delta'=(-1)^2-7.(-3)=22 > 0=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2/7),(x_1.x_2=c/a=-3/7):}`
Có: `M=[7x_1 ^2-2x_1]/3+3/[7x_2 ^2-2x_2]`
`M=[(7x_1 ^2-2x_1)(7x_2 ^2-2x_2)+9]/[3(7x_2 ^2-2x_2)]`
`M=[49(x_1x_2)^2-14x_1 ^2 x_2-14x_1 x_2 ^2+4x_1x_2+9]/[3(7x_2 ^2-2x_2)]`
`M=[49.(-3/7)^2-14.(-3/7)(2/7)+4.(-3/7)+9]/[3x_2(7x_2-2)]`
`M=6/[x_2(7x_2-2)]` `(1)`
Có: `x_1+x_2=2/7=>x_1=2/7-x_2`
Thay vào `x_1.x_2=-3/7 =>(2/7-x_2)x_2=-3/7`
`<=>-x_2 ^2+2/7 x_2+3/7=0<=>x_2=[1+-\sqrt{22}]/7`
`@x_2=[1+\sqrt{22}]/7=>M=6/[[1+\sqrt{22}]/7(7 .[1+\sqrt{22}]/2-2)]=2`
`@x_2=[1-\sqrt{22}]/7=>M=6/[[1-\sqrt{22}]/7(7 .[1-\sqrt{22}]/2-2)]=2`
Vậy `M=2`
a) Phương trình có hai nghiệm phân biệt khi:
\(\Delta=9-4\left(m+1\right)>0\) \(\Leftrightarrow m< \dfrac{5}{4}\)
Vậy \(\ m< \dfrac{5}{4}\) thì pt có hai nghiệm phân biệt.
b) Áp dụng hệ thức viet có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m+1\end{matrix}\right.\)
\(P=\left(x_1+x_2\right)^2-4x_1.x_2+7m+5.x_1x_2\)
\(=9-4\left(m+1\right)+7m+5\left(m+1\right)\)
\(=8m+10\)
Không tồn tại giá trị lớn nhất. Em xem lại đề
Trên đó em ko hề có ghi là tìm m để pt có 2 nghiệm phân biệt. Vậy nên phải là m \(\le\dfrac{5}{4}\). KQ: Giá trị lớn nhất của P = 20 khi m = \(\dfrac{5}{4}\)
a) Ta có: \(2x^2-3x-2=0\)
nên a=2; b=-3 và c=-2
Vì \(x_1\) và \(x_2\) là nghiệm của phương trình \(2x^2-3x-2=0\) nên Áp dụng hệ thức Viet, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{3}{2}\\x_1\cdot x_2=-\dfrac{2}{2}=-1\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=-1\)
nên \(2\cdot x_1\cdot x_2=-2\)
Ta có: \(\left(x_1+x_2\right)^2=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Leftrightarrow x_1^2+x_2^2+2\cdot x_1\cdot x_2=\dfrac{9}{4}\)
\(\Leftrightarrow x_1^2+x_2^2=\dfrac{9}{4}+2=\dfrac{17}{4}\)
Câu 1
a) Xét phương trình : 2x2 +5x - 8 = 0
Có \(\Delta=5^2-4.2.\left(-8\right)=89>0\)
=> Phương trình luôn có 2 nghiệm phân biệt x1, x2
b) Do phương trình luôn có 2 nghiệm x1,x2
=> Theo định lí viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{2}\\x_1.x_2=-4\end{matrix}\right.\)
A = \(\dfrac{2}{x_1}+\dfrac{2}{x_2}=\dfrac{2.x_2}{x_1x_2}+\dfrac{2x_1}{x_1x_2}=\dfrac{2\left(x_1+x_2\right)}{x_1x_2}=\dfrac{2.\left(-\dfrac{5}{2}\right)}{-4}=\dfrac{-5}{-4}=\dfrac{5}{4}\)
Vậy A = \(\dfrac{5}{4}\)
Câu 2
Ta có \(P=\dfrac{a+4\sqrt{a}+4}{\sqrt{x}+2}+\dfrac{4-a}{2-\sqrt{a}}\left(a\ge0;a\ne4\right)\)
\(=\dfrac{\left(2+\sqrt{a}\right)^2}{2+\sqrt{a}}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{2-\sqrt{a}}\)
\(=\sqrt{a}+2+\left(2+\sqrt{a}\right)=2\sqrt{a}+4\)
Vậy P = \(2\sqrt{a}+4\left(a\ge0;a\ne4\right)\)
b) Ta có a2 - 7a + 12 = 0
\(\Leftrightarrow a^2-4a-3a+12=0\)
\(\Leftrightarrow a\left(a-4\right)-3\left(a-4\right)=0\)
\(\Leftrightarrow\left(a-4\right)\left(a-3\right)=0\Leftrightarrow\left[{}\begin{matrix}a=4\left(loại\right)\\a=3\end{matrix}\right.\)
Với a = 3 thay vào P ta được P = \(2\sqrt{3}+4\)
\(\Rightarrow\sqrt{P}=\sqrt{2\sqrt{3}+4}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Vậy \(\sqrt{P}=\sqrt{3}+1\) tại a2 -7a + 12 =0
1) \(\Delta'=1-m>0\forall m< 1\)
Vậy phương trình đã cho luôn có hai nghiệm phân biệt
2) Do a = 1; c = -1 nên a và c trái dấu
Do đó phương trình luôn có hai nghiệm phân biệt
Theo Viét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-1\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_2+x_1}{x_1x_2}=\dfrac{-2}{-1}=2\)
a: Δ=(2m-1)^2-4*(-1)(m-m^2)
=4m^2-4m+1+4m-4m^2=1>0
=>(1) luôn có hai nghiệm phân biệt
b: m=x1-2x1x2+x2-2x1x2
=x1+x2-4x1x2
=2m-1+4(m-m^2)
=>m-2m+1-4m+4m^2=0
=>4m^2-5m+1=0
=>m=1 hoặc m=1/4
c: x1+x2-2x1x2
=2m-1+2m-2m^2=-2m^2+4m-1
=-2m^2+4m-2+1
=-2(m-1)^2+1<=1
a: a*c<0
=>(1) có hai nghiệm phân biệt
b: Bạn viết lại biểu thức đi bạn