Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
\(3\left|2x-1\right|+1=\left(-2\right)^2-3\left(-2\right)^3\)
\(\Rightarrow3\left|2x-1\right|+1=4-3.-8\)
\(\Rightarrow3\left|2x-1\right|+1=4-\left(-24\right)\)
\(\Rightarrow3\left|2x-1\right|+1=28\)
\(\Rightarrow3\left|2x-1\right|=28-1\)
\(\Rightarrow3\left|2x-1\right|=27\)
\(\Rightarrow\left|2x-1\right|=27:3\)
\(\Rightarrow\left|2x-1\right|=9\)
\(\Rightarrow\orbr{\begin{cases}2x-1=9\\2x-1=-9\end{cases}\Rightarrow\orbr{\begin{cases}2x=10\\2x=-8\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
b )
\(x^2\left(x+2\right)+4\left(x+2\right)=0\)
\(\Rightarrow\left(x^2+4\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+4=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-4\left(L\right)\\x=-2\end{cases}\Rightarrow}x=-2}\)
Vậy \(x=-2\)
~ Ủng hộ nhé
Câu 1 : M(x) = 6x3 + 2x4 - x2 + 3x2 - 2x3 - x4 + 1 - 4x3
= ( 6x3 - 2x3 - 4x3 ) + ( 2x4 - x4 ) + ( 3x2 - x2 ) + 1
= x4 + 2x2 + 1
Có : \(x^4\ge0\forall x\)
\(x^2\ge0\forall x\Rightarrow2x^2\ge0\)
=> \(x^4+2x^2+1\ge1>0\forall x\)
=> M(x) vô nghiệm ( đpcm )
Câu 2 : A(x) = m + nx + px( x - 1 )
A(0) = 5 <=> m + n.0 + p.0( 0 - 1 ) = 5
<=> n + 0 + 0 = 5
<=> m = 5
A(1) = -2 <=> 5 + 1n + 1p( 1 - 1 ) = -2
<=> 5 + n + 0 = -2
<=> 5 + n = -2
<=> n = -7
A(2) = 7 <=> 5 + (-7) . 2 + 2p( 2 - 1 ) = 7
<=> 5 - 14 + 2p . 1 = 7
<=> -9 + 2p = 7
<=> 2p = 16
<=> p = 8
Vậy A(x) = 5 + (-7)x + 8x( x - 1 )
câu 1
a(0,125)3x83=(0,125x8)3=13=1
b,2-(\(\frac{-3}{2}\))0+\(\frac{16}{4}:\frac{1}{2}\)=2-1+4:\(\frac{1}{2}\)=1+8=9
c\(^{3^5\cdot\frac{9}{3^7}\cdot2^0}\)=\(3^5\cdot\frac{3}{1}\cdot1=3^5\cdot3\cdot1=3^6\)
d,\(\frac{3}{2}-\frac{5}{6}:\left(\frac{1}{2}\right)^2=\frac{3}{2}-\frac{5}{6}:\frac{1}{4}=\frac{3}{2}-\frac{10}{3}=\frac{9}{6}-\frac{20}{6}=\frac{-11}{6}\)
câu 2
a\(\frac{x}{2}=\frac{4}{5}=\Rightarrow x\cdot5=2\cdot4\Rightarrow x=\frac{2.4}{5}=1,6\)
a)\(\Rightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
b)\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-1\left(VL\right)\\x^2=4\Rightarrow x=2,-2\end{cases}}}\)VL là vô lý do bình phương luôn là số dương
Ủng hộ minhf bằng cachs k đúng nha
\(!X-1!+!x+4!\ge3\)
!X-2!=!Y-3!=0=> X=2; Y=3
2.
a=(3-3^2005)/4
XEM LAI ĐỀ
1.Số hạng thứ 1 cộng số hạng cuối bao giờ cũng lớn hơn hoặc bằng vế phải
=> phần giữa phải triệt tiêu=0
=> x=2 và y=3
a) => \(\frac{1}{7x+2}=\frac{1}{3^2}\Rightarrow7x+2=9\Rightarrow7x=7\Rightarrow x=1\)
b) => \(3^{x-1}+5.3^{x-1}=162\Rightarrow6.3^{x-1}=162\Rightarrow3^{x-1}=162:6=27\)
=> 3^x-1 = 3^3 => x - 1 = 3 => x = 4
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
3x+2-3x+1+3x=1701
3x.32-3x.3+3x=1701
3x.(32-3+1)=1701
3x.(9-3+1)=1701
3x.7=1701
3x=1701:7
3x=243
3x=35
Suy ra:x=5
Vậy x=5
\(3^{x+2}-3^{x+1}+3^x=1701\)
\(3^x.3^2-3^x.3+3^x=1701\)
\(3^x\left(9-3+1\right)=1701\)
\(3^x.7=1701\)
\(3^x=243\)
\(\Leftrightarrow x=5\)