Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi số cần tìm là ab (a, b là chữ số, a khác 0)
Nếu thêm số 14 vào bên trái số đó, ta được số 14ab
Theo bài ra ta có: 14ab=36.ab
1400+ab=36ab
35ab=1400
ab=40
Vậy số cần tìm là 40.
Câu 2:
a) Số \(P_1^{3m}.P_2^{2l}.P_3^n\) có số ước là: (3m + 1)(2l + 1)(n + 1) (ước)
b) Ta thấy 2700 = 22.33.52 nên số ước của 2700 là:
(2 + 1)(3 + 1)(2 + 1) = 36 (ước)
Vậy số phần tử của Ư(2700) là 36.
Câu 5
Nếu p lẻ thì 3p lẻ nên 3p+7 chẵn,mà 3p+7 lầ số nguyên tố
Suy ra 3p+7=2(L)
Khí đó p chẵn,mà p là số nguyên tố nên p=2
Vậy p=2
Câu 3
Ta có:\(\overline{ab}-\overline{ba}=9\times\left(a-b\right)=3^2\times\left(a-b\right)\)
Mà ab-ba là số chính phương nên 3^2X(a-b) là số chính phương
Suy ra a-b là số chính phương
Mà 0<a-b<9 nên \(a-b\in\left\{1;4\right\}\)
Với a-b=1 mà 0<b<a nên ta có bảng sau:
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Với a-b=4 mà a>b>0 nên ta có bảng sau:
a | 5 | 6 | 7 | 8 | 9 |
b | 1 | 2 | 3 | 4 | 5 |
Vậy ..............
Bài 1 : tham khảo trong đây nè!!
Câu hỏi của Hoàng Nguyễn Xuân Dương - Toán lớp 6 - Học toán với OnlineMath
Câu 1 :
a. Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a \(\in\) z ) \(\Leftrightarrow\) a2 - n2 = 2006 \(\Leftrightarrow\) ( a - n ) ( a + n ) = 2006 (*)
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*)
+ Nếu a,n cùng tính chất chẵn hoặc lẻ thì (a-n) chia hết 2 và (a+n) chia hết 2 nên vế trái chia hết cho 4 và vế phải không chia
hết cho 4 nên không thỏa mãn (*)
Vậy không tồn tại n để n2 + 2006 là số chính phương.
b. n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1
+ 2006 = 3m+2007= 3(m+669) chia hết cho 3.
Vậy n2 + 2006 là hợp số.
Câu 2:Ta xét 3 trường hợp \(\dfrac{a}{\text{ }b}\) = 1 \(\dfrac{a}{b}\) > 1 \(\dfrac{a}{b}\) < 1
TH1: \(\dfrac{a}{b}\) =1 \(\Leftrightarrow a=b\) thì \(\dfrac{a+n}{b+n}\)thì\(\dfrac{a+n}{b+n}\) =\(\dfrac{a}{b}\) = 1
TH2: \(\dfrac{a}{b}>1\Leftrightarrow a+m>b+n\)
Mà \(\dfrac{a+n}{b+n}\) có phần thừa so với 1 là \(\dfrac{a-b}{b}\)vì \(\dfrac{a-b}{b+n}< \dfrac{a-b}{b}\) nên \(\dfrac{a+n}{b+n}< \dfrac{a}{b}\)
TH3: \(\dfrac{a}{b}< 1\Leftrightarrow a+n< b+n\)
Khi đó \(\dfrac{a+n}{b+n}\) có phần bù tới 1 là \(\dfrac{a-b}{b}\), \(\dfrac{a-b}{b}< \dfrac{b-a}{bb+n}\)
nên \(\dfrac{a+n}{b+n}>\dfrac{a}{b}\)
b. Cho A= \(\dfrac{10^{11}-1}{10^{12}-1}\) và A < 1 nên theo a, nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a+n}{b+n}>\dfrac{a}{b}\Rightarrow A< \dfrac{\left(10^{11}-1\right)+11}{\left(10^{12}-1\right)+11}=\dfrac{10^{11}+10}{10^{12}+10}\)Do đó \(A< \dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10\left(10^{10}+1\right)}{10\left(10^{12}+1\right)}\)Vậy A<B
Câu 3: Đặt B1 = a1
B2= a1+a2
B3= a1+a2+a3
còn lại làm tương tự như trên đến B10 = a1+a2+ ...+ a10
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh. ( 0,25 điểm).
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư \(\in\) { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có ít nhất 2
số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) \(\Rightarrow\) ĐPCM.
\(a,x^2=4\Rightarrow x^2=2^2\Rightarrow x=2\)
\(b,x^2=64\Rightarrow x^2=8^2\Rightarrow x=8\)
\(c,6x^3-8=40\Rightarrow6x^3=48\Rightarrow x^3=8\Rightarrow x^3=2^3\Rightarrow x=2\)
\(d,\left(2x-1\right)^2=49\Rightarrow\left(2x-1\right)^2=7^2\Rightarrow2x-1=7\Rightarrow x=4\)
\(e,2^x:16=2^5\Rightarrow2^x:16=32\Rightarrow2^x=512\Rightarrow2^x=2^9\Rightarrow x=9\)
\(f,4^5:4^x=16\Rightarrow1024:4^x=16\Rightarrow4^x=64\Rightarrow4^x=4^3\Rightarrow x=3\)
a, x^2 = 4
=> x = 2 hoặc x = -2
b, x^2 = 64
=> x = 8 hoặc x = -8
c, 6x^3 - 8 = 40
=> 6x^3 = 48
=> x^3 = 8
=> x = 2
d, (2x - 1)^2 = 49
=> 2x - 1 = 7 hoặc 2x - 1 = -7
=> 2x = 8 hoặc 2x = -6
=> x = 4 hoặc x = -3
e, 2^x : 16 = 2^5
=> 2^x : 2^4 = 2^5
=> 2^x = 2^9
=> x = 9
f, 4^5 : 4^x = 16
=> 4^5 - x = 4^2
=> 5 - x = 2
=> x = 3
ai đôn nâu