Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi giá xăng tháng 1 là x (nghìn đồng/lít) \(\left(x>12\right)\)
Thì giá xăng tháng 2 là \(x-12\)(nghìn đồng/lít)
Vì tháng 1 dùng 20 lít xăng , tháng 2 dùng 15 lít xăng, cả 2 tháng mua hết 740 000 tiền xăng. Ta có phương trình:
\(20x+15\left(x-12\right)=740\Leftrightarrow35x=920\Leftrightarrow x=\dfrac{184}{7}\left(t.m\right)\)
Vậy giá xăng tháng 1 là \(\dfrac{184000}{7}\)(nghìn đồng/lít)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có
giảm 15% cho máy giặt
mà máy giặt bac An mua có giá 7 500 000 đ
=>số tiền bác An phải trả là= \(\frac{7500000}{100}.15=1125000\)đ
good luck
1 lít ngày thứ 2 xăng ron 92 có số tiền là
17 500+(\(\frac{17500}{100}.1\))=17 675đ
ngày thứ ba xăng ron 92 có số tiền là
17 675+\(\left(\frac{17500}{100}.2\right)\)=18 025đ
vậy ngày thứ ba xăng ron 92 có số tiền là 18 025đ
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số lít xăng E5 và số lít xăng A95 lần lươt là a,b (lít) \(\left(0< a;b< 1000\right)\)
Theo bài ra, ta có: \(\hept{\begin{cases}a+b=1000\\15000a+17000b=16300000\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}15a+15b=15000\\15a+17b=16300\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(15a+17b\right)-\left(15a+15b\right)=16300-15000\\a+b=1000\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=650\\a=350\end{cases}}\) (thỏa mãn)
Vậy trạm đó bán được 350 lít xăng E5 và 650 lít xăng A95
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét \(\Delta ACF\) và \(\Delta ABE\) có:
\(\widehat{AFC}=\widehat{AEB}=90^0\)
\(\widehat{BAC}\) là góc chung
\(\Rightarrow\Delta ACF~\Delta ABE\left(g.g\right)\)
\(\Rightarrow\frac{AC}{AB}=\frac{AF}{AE}\)
\(\Rightarrow AC.AE=AB.AF\)
Xét \(\Delta AEF\) và \(\Delta ABC\) có:
\(\widehat{CAB}\) là góc chung
\(\frac{AE}{AB}=\frac{AF}{AC}\)
\(\Rightarrow\Delta AEF~\Delta ABC\left(c.g.c\right)\)
b, Xét \(\Delta BDH\) và \(\Delta BEC\) có:
\(\widehat{EBC}\) là góc chung
\(\widehat{BEC}=\widehat{BDH}=90^0\)
\(\Rightarrow\Delta BDH~\Delta BEC\left(g.g\right)\)
\(\Rightarrow\frac{BH}{BC}=\frac{BD}{BE}\)
\(\Rightarrow BE.BH=BC.BD\left(1\right)\)
Tương tự như trên ta được: \(\Delta CDH~\Delta CFB\left(g.g\right)\)
\(\Rightarrow\frac{CH}{CB}=\frac{CD}{CF}\)
\(\Rightarrow CF.CH=CD.CB\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BE.BH+CH.CF=BD.BC+BC.CD=BC\left(BD.CD\right)=BC^2\)
\(\Rightarrow BH.BE+CH.CF=BC^2\)
d,EI _|_ AB ; CE _|_ AB => EI // CE => AI/IF = AE/EC (đl)
EK _|_ AD; CD _|_ AD => EK // CD => AK/KD = AE/EC (đl)
=> AI/IF = AK/KD; xét tam giac AFD
=> IK // FD (1)
ER _|_ BC; AD _|_ BC => ER // AD => CR/RD = CE/EA (đl)
EQ _|_ CF; AF _|_ CF => AH // AF => CH/FH = CE/AE (đl)
=> CR/RD = CH/FH; xét tam giác CFD
=> HR // FD (2)
EK _|_ AD; AD _|_ BD => EK // BD => KH/HD = EH/HB (đl)
EH _|_ CF; CF _|_ BF => EH // FB => EH/HB = QH/HF (đl)
=> KH/HD = QH/HF
=> KH // ED (3)
(1)(2)(3) => I;K;H;R thẳng hàng (tiên đề Ơclit)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D F E H
mik làm câu b còn câu a chắc bạn làm được rồi
b,Xét \(\Delta BCF\)và \(\Delta HCD\)có
\(\widehat{D}=\widehat{F}=90^0;C\)chung
\(\Rightarrow\Delta BCF~\Delta HCD\left(g.g\right)\)
\(\Rightarrow\frac{BC}{HC}=\frac{CF}{HD}\)
\(\Rightarrow BC.HD=HC.CF\left(1\right)\)
Xét \(\Delta BHD\)và \(\Delta BCE\) có
\(\widehat{D}=\widehat{E};\widehat{B}\)chung
\(\Rightarrow\Delta HBD~\Delta BCE\left(g.g\right)\)
\(\Rightarrow\frac{BH}{BC}=\frac{BD}{BE}=BH.BE=BC.BD\left(2\right)\)
từ 1 và 2 ta có :
\(BC.BD+BC.CD=BH.BE+CH.CF\)
\(\Rightarrow BH.BE+CH.CF=BC\left(BD+CD\right)\)
\(=BC.BC=BC^2\)
Chúc bạn học tốt !
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)
Do đó: ΔFHB\(\sim\)ΔEHC
Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
\(\widehat{DBH}\) chung
Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC
hay \(BD\cdot BC=BE\cdot BH\)
Xét ΔCDH vuông tại D và ΔCFB vuông tại F có
\(\widehat{DCH}\) chung
Do đó: ΔCDH~ΔCFB
=>\(\dfrac{CD}{CF}=\dfrac{CH}{CB}\)
=>\(CD\cdot CB=CH\cdot CF\)
\(BH\cdot BE+CH\cdot CF\)
\(=BD\cdot BC+CD\cdot BC=BC\left(BD+CD\right)=BC^2\)