Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Giải
Gọi số tự nhiên x là y (y thuộc N)
Để x:3 dư 1; x:5 dư 3; x:7 dư 5
Suy ra: (x-1)chia hết cho3; (x-3)chia hết cho5; (x-5)chia hết cho7
Suy ra: (x-1); (x-3); (x-5) thuộc BC(3; 5; 7)
Suy ra: BCNN(3; 5; 7)=105 Suy ra: BC(3; 5; 7)=B(105)=(0; 105; 210; ................)
Phần tiếp là: ?????????????????????????????
hổng biết làm nữa rồi
Bài 2:
Theo đề, ta có: \(a\in BC\left(24;220\right)\)
mà a nhỏ nhất
nên a=1320
câu 1. \(7^{2n-4}=1\Leftrightarrow2n-4=0\Leftrightarrow n=2\)
câu .2
a. rõ ràng 2x-2 là số chẵn lớn hơn hoạc bằng -2 đồng thời nó là ước của 24 nên ta có
\(2x-2\in\left\{-2;2;4;6;12;24\right\}\Rightarrow x\in\left\{0,2,3,4,7,13\right\}\)
b. rõ ràng 2x+1 là số chẵn lớn hơn hoạc bằng 1 đồng thời nó là ước của 7 nên ta có
\(2x+1\in\left\{1,7\right\}\Rightarrow x\in\left\{0,3\right\}\)
c. ta có \(a+b=a-3+b-4+7\)
ta có a-3 và b-4 chia hết cho 5 còn 7 chia 5 dư 2
vậy a+b chia 5 dư 2..
bài 6: thực hiện phép tính
a, (-4) + (-29) + (-15) + 29 b, 125- (-75) +23-(18+23)
c, (-2).8.(-7).5.(-125) d, (-68).31+31.(-33)+31
bài 7: thực hiện phép tính
a, (-125).8.5.(-2) b, (-57).75+75.(-43)
c, 175-(-25)+32-(62+32) d, 25.(-15+18)-18.(-15+25)
bài 8:
a. (-23)+(-350)+(-7)+350 b, (-19).248+48.19
c, 65-[5.(-3)2-4.(-2)3] d,62.(22-40)-22.(62-40)
bài 9:
a, 315+132-15_(-32) b,[-17-3.(-5)+42] : (-2)
c, -7.18.9+43.63+(-21) .375
Ta có công thức : \(a^{2k+1}+b^{2k+1}⋮a+b\forall a;b\in Z;k\in N\)
Áp dụng ta đc :
a )\(2^{70}+3^{70}=\left(2^2\right)^{35}+\left(3^2\right)^{35}=4^{35}+9^{35}⋮4+9=13\) (đpcm)
b)\(3^{105}+4^{105}=\left(3^5\right)^{35}+\left(4^5\right)^{35}=243^{35}+1024^{35}⋮243+1024=1267=181.7⋮181\)(đpcm)
Câu 1:
Ta có:
\(2^6\equiv-1\left(mod13\right)\Rightarrow2^{70}\equiv2^4.-1\left(mod13\right)\)
\(3^3\equiv1\left(mod13\right)\Rightarrow3^{70}\equiv3\left(mod13\right)\)
\(\Rightarrow2^{70}+3^{70}\equiv13\left(mod13\right)\equiv0\left(mod13\right)⋮13\left(dpcm\right)\)
câu 2: tìm số dư khi chia
a, 5^1000 cho 6
b, 4^2018 cho 3;15;13
c, 1997^2019 cho 9