Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ Thui
Hình vẽ
A B C D E F
Vì DE song song với AC nên
Theo định lí Ta lét
Ta có
\(\frac{AE}{AB}=\frac{CD}{BC}\)
Vì DF song song với AB nên
Theo định lí Ta lét
Ta có: \(\frac{AF}{AC}=\frac{BD}{BC}\)
Suy ra \(\frac{AE}{AB}+\frac{AF}{AC}=\frac{CD}{BC}+\frac{BD}{BC}=\frac{BC}{BC}=1\)
Vậy ...........................
a) \(\hept{\begin{cases}\widehat{K}=\widehat{BAD}\\\widehat{AEK}=\widehat{DAE}\end{cases}}\)Mà \(\widehat{BAD}=\widehat{DAE}\)(AD là tia phân giác) => \(\widehat{K}=\widehat{AEK}\Rightarrow\Delta AEK\)cân tại A => AE=AK (đpcm)
b) Vì MK // AD nên \(\frac{AK}{BK}=\frac{DM}{BM}\Rightarrow\frac{AK}{DM}=\frac{BK}{BM}\left(1\right)\)
Vì AD // EM nên \(\frac{CE}{AE}=\frac{CM}{DM}\Rightarrow\frac{CE}{CM}=\frac{AE}{DM}\left(2\right)\)
Vì AK=AE (cmt câu a) nên \(\frac{AK}{DM}=\frac{AE}{DM}\left(3\right)\)
Từ (1)(2) và (3) => \(\frac{BK}{BM}=\frac{CE}{CM}\)
Mà BM=CM (M là trung điểm BC) => BK=CE (đpcm)
A B D C F E
Vì DF//AB (gt) . Áp dụng định lý Talet ta có : \(\frac{AF}{AC}=\frac{BD}{BC}\)(1)
Vì DE//AC (gt) . Áp dụng định lý Talet ta có : \(\frac{AE}{AB}=\frac{CD}{BC}\)(2)
Từ (1);(2) \(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BD+CD}{BC}=\frac{BC}{BC}=1\)(Đpcm)