K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2020

Câu 1: giả sử:\(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{OC}-\overrightarrow{OB}\Leftrightarrow\overrightarrow{BA}+\overrightarrow{AD}-\overrightarrow{BA}=\overrightarrow{OC}+\overrightarrow{BO}\)

\(\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)(luôn đúng vì ABCD lad hình bình hành)

giả sử: \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{0}\Leftrightarrow\overrightarrow{BC}-\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{BA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{BB}+\overrightarrow{DD}=\overrightarrow{0}\)(LUÔN ĐÚNG)

câu 2 :GIẢ SỬ:

 \(\overrightarrow{AB}+\overrightarrow{OA}=\overrightarrow{OB}\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{OA}+\overrightarrow{BO}=\overrightarrow{0}\)(luôn đúng)

giả sử: \(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\\ \Leftrightarrow\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\)

15 tháng 11 2023

\(\overrightarrow{OC}-\overrightarrow{OB}=\overrightarrow{BO}+\overrightarrow{OC}=\overrightarrow{BC}\)(1)

ABCD là hình bình hành

=>\(\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{BC}\)

=>\(\overrightarrow{BC}=\overrightarrow{BD}-\overrightarrow{BA}\left(2\right)\)

Từ (1) và (2) suy ra \(\overrightarrow{OC}-\overrightarrow{OB}=\overrightarrow{BD}-\overrightarrow{BA}\)

Vì O là tâm của hình bình hành ABCD

nên O là trung điểm chung của AC và BD

=>\(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0};\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}\)

\(\dfrac{1}{4}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right)\)

\(=\dfrac{1}{4}\left(\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\right)\)

\(=\dfrac{1}{4}\left(4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}\right)\)

\(=\dfrac{1}{4}\cdot4\overrightarrow{MO}=\overrightarrow{MO}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO} \)

\( \Leftrightarrow \overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {MO}  + \overrightarrow {OB}  + \overrightarrow {MO}  + \overrightarrow {OC}  + \overrightarrow {MO}  + \overrightarrow {OD}  = 4\overrightarrow {MO} \)

\( \Leftrightarrow 4\overrightarrow {MO}  + \left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) + \left( {\overrightarrow {OC}  + \overrightarrow {OD} } \right) = 4\overrightarrow {MO} \)

\( \Leftrightarrow 4\overrightarrow {MO}  + \overrightarrow 0  + \overrightarrow 0  = 4\overrightarrow {MO} \\ \Leftrightarrow 4\overrightarrow {MO}  = 4\overrightarrow {MO} \) (luôn đúng)

(vì là giao điểm 2 đường chéo nên là trung điểm của AB, CD)

b) ABCD là hình bình hành nên ta có \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Suy ra \(\)\(\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} = \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) + \overrightarrow {AC}  = \overrightarrow {AC}  + \overrightarrow {AC}  = 2\overrightarrow {AC} \) (đpcm)

a: \(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{AD}\)

b: \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{BD}-\overrightarrow{BD}=\overrightarrow{0}\)

 

26 tháng 9 2021

sao ki vay???

 

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a)  ABCD là hình bình hành nên \(\overrightarrow {DC}  = \overrightarrow {AB} \)

\( \Rightarrow \overrightarrow {BA}  + \overrightarrow {DC}  = \overrightarrow {BA}  + \overrightarrow {AB}  = \overrightarrow {BB}  = \overrightarrow 0 \)

b) \(\overrightarrow {MA}  + \overrightarrow {MC}  = \left( {\overrightarrow {MB}  + \overrightarrow {BA} } \right) + \left( {\overrightarrow {MD}  + \overrightarrow {DC} } \right)\)

\(= \left( {\overrightarrow {MB}  + \overrightarrow {MD} } \right) + \left( {\overrightarrow {BA}  + \overrightarrow {DC}} \right)\)

\(= \overrightarrow {MB}  + \overrightarrow {MD} \) (Vì \(\overrightarrow {BA}  + \overrightarrow {DC}  = \overrightarrow {0} \))