K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2021

\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt{8x^2+5x+2}}=\dfrac{1+\sqrt{1+\dfrac{2}{x^2}}}{\sqrt{8+\dfrac{5}{x}+\dfrac{2}{x^2}}}=\dfrac{1+\sqrt{1}}{\sqrt{8}}=\dfrac{\sqrt{2}}{2}\).

 

13 tháng 3 2021

Thiếu \(\lim\limits_{x\rightarrow-\infty}\) ở sau dấu bằng thứ nhất nha

6 tháng 3 2021

a/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{\dfrac{\left(2x\right)^2.\left(4x\right)^3}{x^4}}{\dfrac{\left(3x\right)^2\left(5x^2\right)}{x^4}}=\lim\limits_{x\rightarrow\pm\infty}\dfrac{4^4.x}{45}=\pm\infty\)

b/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{\sqrt[3]{\dfrac{x^3}{x^3}+\dfrac{2x^2}{x^3}+\dfrac{x}{x^3}}}{\dfrac{2x}{x}-\dfrac{2}{x}}=\dfrac{1}{2}\)

c/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{\dfrac{\sqrt[3]{\left(x^3+2x^2\right)^2}}{x^2}+\dfrac{x\sqrt[3]{x^3+2x^2}}{x^2}+\dfrac{x^2}{x^2}}{\dfrac{3x^2}{x^2}-\dfrac{2x}{x^2}}=\dfrac{1+1+1}{3}=1\)

d/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{\left(-3x\right)^3x^2}{x^5}}{-\dfrac{4x^5}{x^5}}=\dfrac{-27}{-4}=\dfrac{27}{4}\)

e/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{\left(2x\right)^{20}.\left(3x\right)^{20}}{x^{50}}}{\dfrac{\left(2x\right)^{50}}{x^{50}}}=0\)

g/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{8x^3.\left(4x^5\right)^9}{x^{47}}}{\dfrac{11x^{47}}{x^{47}}}=+\infty\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+2x}+3x}{\sqrt{4x^2+1}-x+2}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{2}{x}}+3}{\sqrt{4+\dfrac{1}{x^2}}-1+\dfrac{2}{x}}=\dfrac{1+3}{2-1}=\dfrac{4}{1}=4\)

2 tháng 12 2023

x đến âm vô cực thì làm sao ạ

14 tháng 3 2021

\(\lim\limits_{x\rightarrow\infty}\left(\sqrt{x+1}-\sqrt{x}\right)=\lim\limits_{x\rightarrow\infty}\dfrac{1}{\sqrt{x+1}+\sqrt{x}}=\dfrac{1}{\infty}=0\).

14 tháng 3 2021

a) \(lim_{x\rightarrow+\infty}\left(\sqrt{x+1}-\sqrt{x}\right)=lim_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{x+1}+\sqrt{x}}\right)=0\)

b) \(lim_{x\rightarrow+\infty}\left(\sqrt{x+\sqrt{x}}-\sqrt{x}\right)=lim_{x\rightarrow+\infty}\left(\dfrac{x+\sqrt{x}-x}{\sqrt{x+\sqrt{x}}+\sqrt{x}}\right)=lim_{x\rightarrow+\infty}\left(\dfrac{\sqrt{x}}{\sqrt{x+\sqrt{x}}+\sqrt{x}}\right)\)

\(=lim_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{\dfrac{x+\sqrt{x}}{x}}+1}\right)=lim_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{1+\dfrac{1}{\sqrt{x}}}+1}\right)=\dfrac{1}{2}\)

c) \(lim_{x\rightarrow-\infty}\left(\sqrt{3x^2+x+1}+x\sqrt{3}\right)=lim_{x\rightarrow-\infty}\left(\dfrac{x+1}{\sqrt{3x^2+x+1}-x\sqrt{3}}\right)\)

\(=lim_{x\rightarrow-\infty}\left(\dfrac{1+\dfrac{1}{x}}{\sqrt{\dfrac{3x^2+x+1}{x^2}}-\dfrac{x\sqrt{3}}{x^2}}\right)\)

\(=lim_{x\rightarrow-\infty}\left(\dfrac{1+\dfrac{1}{x}}{\sqrt{3+\dfrac{1}{x}+\dfrac{1}{x^2}}-\dfrac{\sqrt{3}}{x}}\right)=\dfrac{1}{\sqrt{3}}\)

d) \(lim_{x\rightarrow+\infty}\left(\sqrt{x^2+2x+4}-\sqrt{x^2-2x+4}\right)=lim_{x\rightarrow+\infty}\left(\dfrac{4x}{\sqrt{x^2+2x+4}+\sqrt{x^2-2x+4}}\right)\)

\(=lim_{x\rightarrow+\infty}\left(\dfrac{4}{\sqrt{1+\dfrac{2}{x}+\dfrac{4}{x^2}}+\sqrt{1-\dfrac{2}{x}+\dfrac{4}{x^2}}}\right)=\dfrac{4}{2}=2\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

a. Áp dụng công thức L'Hospital:

\(\lim\limits_{x\to 0}\frac{\sqrt{x+1}-\sqrt{1-x}}{\sqrt[3]{x+1}-\sqrt{1-x}}=\lim\limits_{x\to 0}\frac{\frac{1}{2}(x+1)^{\frac{-1}{2}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}{\frac{1}{3}(x+1)^{\frac{-2}{3}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}=\frac{1}{\frac{5}{6}}=\frac{6}{5}\)

b.

\(\lim\limits_{x\to 0}(\frac{1}{x}-\frac{1}{x^2})=\lim\limits_{x\to 0}\frac{x-1}{x^2}=-\infty\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

c. Áp dụng quy tắc L'Hospital:

\(\lim\limits_{x\to +\infty}\frac{x^4-x^3+11}{2x-7}=\lim\limits_{x\to +\infty}\frac{4x^3-3x^2}{2}=+\infty \)

d.

\(\lim\limits_{x\to 5}\frac{7}{(x-1)^2}.\frac{2x+1}{2x-3}=\frac{7}{(5-1)^2}.\frac{2.5+11}{2.5-3}=\frac{11}{16}\)

25 tháng 10 2021

undefined

giúp mình với mn ơikhocroi

a: \(\lim\limits_{x\rightarrow2^+}\dfrac{\sqrt{x-2}+1}{x^2-3x+2}=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow2^+}\sqrt{x-2}+1=\sqrt{2-2}+1=1>0\\\lim\limits_{x\rightarrow2^+}x^2-3x+2=\lim\limits_{x\rightarrow2^+}\left(x-1\right)\left(x-2\right)=0\end{matrix}\right.\)

=>x=2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{\sqrt{x-2}+1}{x^2-3x+2}\)

b: \(\lim\limits_{x\rightarrow-5^+}\dfrac{\sqrt{5+x}-1}{x^2+4x}=\dfrac{\sqrt{5-5}-1}{\left(-5\right)^2+4\cdot\left(-5\right)}=\dfrac{-1}{25-20}=\dfrac{-1}{5}\)

=>x=-5 không là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{\sqrt{5+x}-1}{x^2+4x}\)

\(\lim\limits_{x\rightarrow\left(-4\right)^+}\dfrac{\sqrt{5+x}-1}{x^2+4x}\)

\(=\lim\limits_{x\rightarrow\left(-4\right)^+}\dfrac{5+x-1}{\left(\sqrt{5+x}+1\right)\left(x^2+4x\right)}=\lim\limits_{x\rightarrow\left(-4\right)^+}\dfrac{x+4}{\left(\sqrt{5+x}+1\right)\cdot x\left(x+4\right)}\)

\(=\lim\limits_{x\rightarrow\left(-4\right)^+}\dfrac{1}{x\left(\sqrt{5+x}+1\right)}=\dfrac{1}{\left(-4\right)\cdot\left(\sqrt{5-4}+1\right)}=\dfrac{1}{-8}=-\dfrac{1}{8}\)

=>x=-4 không là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{\sqrt{5+x}-1}{x^2+4x}\)

\(\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{5+x}-1}{x^2+4x}=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow0^+}\sqrt{5+x}-1=\sqrt{5+0}-1=\sqrt{5}-1>0\\\lim\limits_{x\rightarrow0^+}x^2+4x=0\end{matrix}\right.\)

=>Đường thẳng x=0 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{\sqrt{5+x}-1}{x^2+4x}\)

c: \(\lim\limits_{x\rightarrow0^+}\dfrac{5x+1-\sqrt{x+1}}{x^2+2x}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\dfrac{5x+1-x^2-2x-1}{5x+1+\sqrt{x+1}}}{x\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{-x^2+3x}{\left(5x+1+\sqrt{x+1}\right)\cdot x\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{-x\left(x-3\right)}{x\left(x+2\right)\left(5x+1+\sqrt{x+1}\right)}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{-x+3}{\left(x+2\right)\left(5x+1+\sqrt{x+1}\right)}=\dfrac{-0+3}{\left(0+2\right)\left(5\cdot0+1+\sqrt{0+1}\right)}\)

\(=\dfrac{3}{2\cdot\left(6+1\right)}=\dfrac{3}{14}\)

=>x=0 không là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{5x+1-\sqrt{x+1}}{x^2+2x}\)

\(\lim\limits_{x\rightarrow\left(-2\right)^+}\dfrac{5x+1-\sqrt{x+1}}{x^2+2x}\) không có giá trị vì khi x=-2 thì căn x+1 vô giá trị

=>Đồ thị hàm số \(y=\dfrac{5x+1-\sqrt{x+1}}{x^2+2x}\) không có tiệm cận đứng

d: \(\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}\) không có giá trị vì khi x=0 thì \(\sqrt{4x^2-1}\) không có giá trị

\(\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow1^+}\sqrt{4x^2-1}+3x^2+2=\sqrt{4-1}+3\cdot1^2+2=5+\sqrt{3}>0\\\lim\limits_{x\rightarrow1^+}x^2-x=0\end{matrix}\right.\)

=>x=1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}\)