Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 lon sữa có dạng hình trụ với bán kính đáy 3,5 cm và chiều cao 7,8.Tính thể tích sữa chứa trong lon
Ờ .......... khoảng 300 đúng hông . sai đừng nói gì mình nghe
Thể tích sữa chứa trong lon:
\(V=\pi r^2h=3,5^2.7,8.\dfrac{22}{7}=300,3\left(cm^3\right)=300,3\left(ml\right)\)
Gọi chiều cao là x
=>Bán kính là 0,4x
Theo đề, ta có; x*(0,4x)^2*pi=540*pi
=>0,16*x^3=540
=>x=15
=>Bán kính là 6cm
Diện tích vỏ hộp là:
2*pi*15*6+2*pi*15^2
=630pi(cm2)
a) Giá trị gần đúng của h là : 10,5 cm
b) Giá trị của r là : 24 cm
Bài làm :
Đường kính đáy và độ dài trục của hình trụ bằng nhau
=> Chiều cao h gấp 2 lần bán kính r
Ta có :
\(V=\pi.r^2.h\)
\(\Rightarrow16\pi=\pi.r^2.2r\)
\(\Rightarrow2.r^3=16\)
\(\Rightarrow r^3=8\)
\(\Rightarrow r=2\left(cm\right)\)
\(\Rightarrow h=2r=4\left(cm\right)\)
Vậy diện tích vật liệu cần dùng là ;
\(S_{tp}=2.\pi.r.h+2.\pi.r^2=16\pi+8\pi=24\pi\left(cm^2\right)\)
Gọi số đo đường kính đáy của hộp sữa là x (cm)→ Trục của hộp sữa là x→Bán kính đáy là \(\dfrac{1}{2}x\)
Vì thể tích hộp sữa là 16\(\pi\)⇒\(\left(\dfrac{1}{2}x\right)^2x=16\)⇔x=4→Bán kính đáy là 2cm
⇒Stp=2.\(\pi\).22.4+2.\(\pi\).22=40\(\pi\)
1:
V=pi*r^2*h
=>r^2*15*pi=375pi
=>r^2=25
=>r=5
Sxq=2*pi*r*h=2*5*15*pi=150pi
Theo đề bài, tổng diện tích nửa mặt cầu và diện tích hình tròn đáy gấp 3 lần diện tích toàn phần của hình trụ nên:
Đáp án: 28,1
Giải thích các bước giải:
a) Đường kính đáy của hình nón đó là:
d = 2 . r = 2 . 2 = 4
Vì chiều cao của hình nón đó bằng đường kính đáy của hình nón đó nên chiều cao h của hình nón đó là: h = 4 (cm)
Ta có: l² = r² + h² (theo định lý Py - ta - go)
⇒ l = √(r² + h²) = √(2² + 4²) = √(4 + 16) = √20 (cm)
Diện tích xung quanh của hình nón đó là: Sxq = π . r . l = π . 2 . √20 ≈ 28,1(cm²)
Vậy diện tích xung quanh của hình nón đó là ≈ 28,1
giải hộ mik phần b được không