K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

(d1): y = 1/2x + 2

và (d2): y = -x + 2

1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy.

(d1) là đường thẳng đi qua hai điểm (0; 2) và (-4; 0)

  (d2) là đường thẳng đi qua hai điểm (0; 2) và  (2;0)

2. Tính chu vi và diện tích của tam giác ABC

(d1) và (d2) cùng cắt nhau tại một điểm trên trục tung có tung độ bằng 2

Áp dụng định lý Pi ta go cho các tam giác AOC và BOC vuông ở O ta được:

\(AC=\sqrt{4^2+2^2}=\sqrt{20}=2\sqrt{5}\)

\(BC=\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\)

Chu vi tam giác ABC : AC + BC + AB= 2√5 + 2√2 + 6

≈ 13,30

Diện tích tam giác ABC

\(\frac{1}{2}.OC.AB=\frac{1}{2}.2.6=6CM^2\)

NHÉ THAK NHÌU

27 tháng 11 2016

b) Lập phương trình hoành độ giao điểm ta có;

2x - 1 = -x+2

-> 2x + x =2+1

-> 3x = 3

-> x = 1

Thay x=1 vào hàm số y = 2x - 1 ta được y= 2-1 = 1

Vậy tọa độ giao điểm M ( 1;1)

c) Thao đn TSLG có :

tanABO = \(\frac{1}{0,5}\)= 2

-> ​​ABO ( bạn thêm kí hiệu góc vào ) \(\approx\) 63độ 26phut

Gọi \(\alpha\)là góc tạo bởi hàm số y=2x-1 và trục 0x ta có \(\alpha\)= ABO ( bạn thêm kí hiệu góc vào ) ( đối đỉnh) =  63độ 26phut

a) Xét hàm số y=2x-1 ( x\(\in\)R)

Cho x=0 -> y=-1 -> A( 0;-1)

Cho y=0 -> x= 0.5 -> B ( 0.5 : 0)

Xét hàm số y= -x+2 ( x \(\in\)R)

Cho x=0 -> y=2 -> C (0;2)

Cho y =0-> x= 2 -> D( 2;0)

vẽ đồ thị

27 tháng 11 2016
98ty
đdd
đdd
                                                       
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
30 tháng 9 2021

A B D E K O C d1 d2 H I G

a/

\(d_1;d_2\) là tiếp tuyến với đường tròn tại A và B \(\Rightarrow d_1\perp AB;d_2\perp AB\) => \(d_1\)//\(d_2\)

Xét tg vuông ABK có

\(\widehat{ACB}=90^o\) (góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow AK^2=KC.KB\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

b/ 

Ta có 

DA=DC (2 tiếp tuyến của 1 đường tròn cùng xuất phát từ 1 điểm thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau) (1)

EC=EB (lý do như trên) => tg EBC cân tại E\(\Rightarrow\widehat{ECB}=\widehat{KBE}\) (2 góc ở đáy của tg cân) (*)

\(\widehat{KBE}=\widehat{AKB}\) (góc so le trong) (**)

\(\widehat{KCD}=\widehat{ECB}\) (Góc đối đỉnh) (***)

Từ (*) (**) và (***) \(\Rightarrow\widehat{AKB}=\widehat{KCD}\) => tg DCK cân tại D => DC=DK (2)

Từ (1) và (2) => DA=DK nên K là trung điểm của AK

c/ Gọi I là giao của CH với BD

Ta có 

\(CH\perp AB;d_1\perp AB\) => CH//\(d_1\)

\(\Rightarrow\frac{IC}{DK}=\frac{BC}{BK}=\frac{BH}{BA}=\frac{IH}{DA}\) (Talet trong tam giác)

Mà DK=DA => IC=IH => BD đi qua trung điểm I của CH

d/

30 tháng 9 2021

câu a ý số 2 bạn còn cách nào khác ko? Tại mk chx hc góc nội tiếp chắn nửa đường tròn