Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>DA=DH
mà DH<DC
nên DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
=>ΔDAK=ΔDHC
=>góc ADK=góc HDC
=>góc HDC+góc KDC=180 độ
=>K,D,H thẳng hàng
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔBAC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(Cạnh huyền-góc nhọn)
A) XÉT ΔABD VUÔNG TẠI D, ΔACE VUÔNG TẠI E
CÓ; AB=AC (ΔABC CÂN TẠI A)
\(\widehat{BAC}\) : GÓC CHUNG
⇒ΔABD= ΔACE (C.HUYỀN-G.NHỌN)
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H co
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: DA=DH
DH<DC
=>DA<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC can tại B
mà BI là trung tuyến
nên BI là phân giác của góc KBC
mà BD là phân giác
nên B,D,I thẳng hàng
a) Xét \(\Delta\)\(\text{ }\text{ABD}\) và \(\text{ΔHBD}\) có
\(\widehat{\text{BAD}}=\widehat{\text{BHD}}=\text{90}^{\text{o}}\)
\(\text{BD}\) là cạnh chung
\(\widehat{\text{ABD}}=\widehat{\text{HBD}}\) (do \(\text{BD}\) là tia phân giác của \(\widehat{\text{ABD}}\) )
Vậy \(\text{ΔABD = ΔHBD}\) (cạnh huyền – góc nhọn)
___________________________________________________
b) Từ \(\text{ΔABD = ΔHBD}\) (câu a) suy ra\(\text{ AD = HD}\) (hai cạnh tương ứng)
Xét \(\text{ΔDHC}\) vuông tại \(\text{H}\) có \(\text{DC}\) là cạnh huyền nên \(\text{DC}\) là cạnh lớn nhất
Do đó \(\text{DC}\)\(>\text{HD}\) nên \(\text{DC}>AD\)
________________________________________________________
c) Xét \(\text{ΔBKC}\) có \(\text{CA ⊥ BK, KH ⊥ BC}\) và \(\text{CA}\) cắt \(\text{KH}\) tại \(\text{D}\)
Do đó \(\text{D}\) là trực tâm của \(\text{BKC}\), nên \(\text{BD ⊥ KC (1)}\)
Gọi \(\text{J}\) là giao điểm của \(\text{BD và KC}\)
Xét \(\text{ΔBKJ}\) và \(\text{ΔBCJ}\) có
\(\widehat{\text{BJK}}=\widehat{BJC}=90^o\)
\(\text{BJ}\) là cạnh chung
\(\widehat{\text{KBJ}}=\widehat{\text{CBJ}}\) (do \(\text{BJ}\) là tia phân giác của \(\widehat{\text{ABD}}\) )
\(\Rightarrow\) \(\text{ΔBKJ = ΔBCJ}\) (cạnh góc vuông – góc nhọn kề)
Suy ra\(\text{ KJ = CJ}\) (hai cạnh tương ứng)
Hay \(\text{J}\) là trung điểm của \(\text{KC}\)
theo bài ra : \(\text{I}\) là trung điểm của \(\text{KC}\) nên \(\text{I}\) và \(\text{J}\) trùng nhau.
Vậy \(\text{B, D, I}\) thẳng hàng
a) Xét △ABD và △DBH có
DB : cạnh chung
góc ABD = góc DBH ( gt )
⇒ △ABD = △DBH ( ch - gn )
⇒ AD = HD ( 2 cạnh tương ứng )
b) △HDC có : DH < DC ( vì trong △ vuông , cạnh huyền lớn nhất )
mà DH = AD ⇒ AD < DC
thank 💗💗💗💗💗