K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

Hình bạn tự vẽ nha

a. Xét hai tam giác vuông HAE và tam giác DEA có ;

          góc AHE = góc ADE = 90độ

          cạnh AE chung 

          góc HAE = góc DAE [ vì AE là tia pg góc HAC ]

Do đó ; tam giác HAE = tam giác DAE [ cạnh huyền - góc nhọn ]

b. Xét tam giác EDC vuông tại D nên 

 EC lớn hơn ED 

mà ED = EH [ vì tam giác HAE = tam giác DAE theo câu a ]

\(\Rightarrow\)EC lớn hơn EH

Chúc bạn học tốt

Kết bạn với mình nha

23 tháng 6 2020

ta có: góc BAD + góc DAC = 90 độ

góc ADH + góc HAD = 90 độ ( vì tam giác AHD vuông tại H )

mà DAC = HAD ( AD là tia phân giác)

suy ra góc BAD = góc BDA

vậy tam giác ABD là tam giác cân tại B

ta có : góc CAE + góc EAB = 90 độ

góc CEA + góc HAE = 90 độ (tam giác AEH vuông tại H)

mà EAB=HAE suy ra góc CAE = góc CEA

vậy tam giác ACE cân tại C

- Ta có : AB=BD ( tam giác ABD cân)

AC=CE( tam giác AEC cân )

suy ra AB+AC=BD+CE

=BE+ED+CD+ED

=BC+DE

4 tháng 5 2016

a, Xét tam giác AHE và tam giác ADE:

góc HAE=góc DAE(phân giác AE)

AE(cạnh chung)

góc AHE= góc ADE(=90 độ)

\(\Leftrightarrow\)tam giác AHE = Tam giác ADE(cạnh huyền-góc nhọn)

b, Tam giác AHD:

AH=AD(cặp cạnh tương ứng)

\(\Rightarrow\)\(\Delta\)AHD cân tại A

c, \(\Delta\)vuông DEC:

EC>DE(cạnh huyền>cạnh góc vuông)

mà HE=DE(cặp cạnh tương ứng)

\(\Leftrightarrow\)EC>HE

4 tháng 5 2022

db

 

 

23 tháng 1 2022

a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường phân giác góc A (Tính chất tam giác cân).

b) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường trung tuyến (Tính chất tam giác cân).

=> H là trung điểm của BC.

=> BH = HC = \(\dfrac{1}{2}\) BC = \(\dfrac{1}{2}\).8 = 4 (cm).

Xét tam giác AHB vuông tại A:

Ta có: \(AB^2=AH^2+BH^2H^2\) (Định lý Pytago).

=> \(5^2=AH^2+4^2.\) => \(AH^2=5^2-4^2=9.\)

=> AH = 3 (cm).

c) Xét tam giác AHD vuông tại D và tam giác AHE vuông tại A:

AH chung.

Góc DAH = Góc EAH (AH là đường phân giác góc A).

=> Tam giác AHD = Tam giác AHE (ch - gn).

=> HD = HE (2 cạnh tương ứng). 

=> Tam giác DHE cân tại H.

19 tháng 5 2022

undefined

a/ Xét \(\Delta\) vuông AHD và \(\Delta\) AED. Có:

\(\widehat{A1}\)\(\widehat{A2}\) ( giả thiết)

AD chung

=> \(\Delta AHD=\Delta AED\) ( ch-gn)

=> DH = DE ( 2 cạnh tương ứng )

b/ BMC không cân được bạn nhé. bạn chép nhầm đề bài r: Chứng minh DMC cân mới đúng.

Xét \(\Delta vuôngHDM\) và \(\Delta vuôngEDC\). Có:

\(\widehat{D1}\) = \(\widehat{D2}\) ( đối đỉnh)

HD = HE ( cmt)

=> \(\Delta HDM=\Delta EDC\left(cgv-gnk\right)\)

=> DM = DC ( 2 cạnh tương ứng)

=> Xét \(\Delta DMCcóDM=DC=>\Delta DMCcân\left(cântạiD\right)\)

~ Cậu ktra lại nhé~

 

3 tháng 5 2019

A B C H D K

a) Xét \(\Delta ABC\)có AB = 5cm; AC = 12cm. Theo định lý Py-ta-go ta có:

       \(BC^2=AB^2+AC^2\)

       \(BC^2=5^2+12^2\)

       \(BC^2=25+144\)

       \(BC^2=169\) 

        \(BC=13\)

Vậy cạnh BC = 13cm

b)Xét tam giác AHD và tam giác AKD ta có:

      \(\widehat{AHD}=\widehat{AKD}=90^o\)

       AD chung

       \(\widehat{DAH}=\widehat{DAK}\)(AD là tia phân giác)

=> tam giác AHD = tam giác AKD (g.c.g)

     

3 tháng 5 2019

Bạn có thể làm ý d được ko ạ

TC
Thầy Cao Đô
Giáo viên VIP
27 tháng 12 2022

loading...

a) Xét hai tam giác vuông $AHB$ và $AHC$ có:

$AH$ là cạnh chung;

$AB = AC$ (gt);

Suy ra $\Delta AHB=\Delta AHC$ (cạnh huyền - cạnh góc vuông)

Suy ra $HB = HC$ (Hai cạnh tương ứng)

$\widehat{BAH} = \widehat{CAH}$ (hai góc tương ứng).

b) Xét hai tam giác vuông $ADH$ và $AEH$ có:

$AH$ là cạnh chung;

$\widehat{BAH} = \widehat{CAH}$ (cmt);

Suy ra $\Delta ADH=\Delta AEH$ (cạnh huyền - góc nhọn).

Suy ra $HD = HE$ (Hai cạnh tương ứng) nên $\Delta HDE$ cân tại $H$.