K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=\left|\overrightarrow{AC}\right|=4\)

20 tháng 11 2023

loading...

3 tháng 9 2020

\(\overrightarrow{AH}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\Leftrightarrow2\overrightarrow{AC}-\overrightarrow{AB}=3\overrightarrow{AH}\)

 Gọi I là trung điểm AC

Ta có : \(BG=GH=2GI\Rightarrow GI=IH\)

Tứ giác \(AGCH\)có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành 

\(\Rightarrow AH=GC\)

\(2\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{AB}+\overrightarrow{BC}\)

\(=\overrightarrow{AH}+\overrightarrow{HC}+\overrightarrow{BH}+\overrightarrow{HC}=\overrightarrow{AH}+2\overrightarrow{GH}+2\overrightarrow{HC}\)

\(=\overrightarrow{AH}+2\overrightarrow{GH}+2\left(\overrightarrow{HG}+\overrightarrow{GC}\right)=\overrightarrow{AH}+2\overrightarrow{GC}=\overrightarrow{AH}+2\overrightarrow{AH}=3\overrightarrow{AH}\)

A B C H G I

3 tháng 9 2020

Mình xin cảm ơn ạ

17 tháng 9 2023

Ta có :

\(BC^2=AB^2+AC^2\left(Pitago\right)\)

\(\Leftrightarrow BC^2=\dfrac{4}{9}BC^2+AC^2\)

\(\Leftrightarrow BC^2-\dfrac{4}{9}BC^2=AC^2\)

\(\Leftrightarrow\dfrac{5}{9}BC^2=AC^2\)

\(\Leftrightarrow BC^2=\dfrac{9}{5}AC^2=\dfrac{9}{5}.\left(12a\right)^2\)

\(\Leftrightarrow\left|\overrightarrow{BC}\right|=BC=\dfrac{3}{\sqrt[]{5}}.12a=\dfrac{36a\sqrt[]{5}}{5}\)

\(\Rightarrow\left|\overrightarrow{AB}\right|=AB=\dfrac{2}{3}.\dfrac{36a\sqrt[]{5}}{5}=\dfrac{24a\sqrt[]{5}}{5}\)

NV
17 tháng 1 2022

\(\left(\overrightarrow{BA},\overrightarrow{BC}\right)=\widehat{ABC}=90^0-ACB=90^0-35^0=55^0\)

15 tháng 10 2021

b: \(\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=\left|\dfrac{\overrightarrow{AC}}{2}\right|=\dfrac{5}{2}a\)

NV
24 tháng 7 2021

Tam giác vuông cân tại C \(\Rightarrow AC=\dfrac{AB}{\sqrt{2}}=a\sqrt{2}\)

Do I là trung điểm BC \(\Rightarrow\overrightarrow{IC}=-\overrightarrow{IB}\)

Vậy:

\(\left|\overrightarrow{AI}-\overrightarrow{IB}\right|=\left|\overrightarrow{AI}+\overrightarrow{IC}\right|=\left|\overrightarrow{AC}\right|=AC=a\sqrt{2}\)