\(\dfrac{2n-3}{n+1}\)  có giá trị là số nguyên.

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

\(\frac{n^3+2n+2}{n+3}=\frac{\left(n^3+9n^2+27n+27\right)-9\left(n^2+6n+9\right)+29\left(n+3\right)-31}{n+3}\)

\(=\frac{\left(n+3\right)^3-9\left(n+3\right)^2+29\left(n+3\right)-31}{n+3}\)

\(=\left(n+3\right)^2-9\left(n+3\right)+29-\frac{31}{n+3}\)

Để phân số trên nhận giá trị nguyên thì \(\left(n+3\right)\inƯ\left(31\right)\)

Từ đó bạn liệt kê ra nhé :)

12 tháng 8 2016

Giải:

Để \(\frac{n^3+2n+2}{n+3}\in Z\Rightarrow n^3+2n+2⋮n+3\Rightarrow n^3⋮n+3;2n+2⋮n+3\)

Ta có:

\(n^3⋮n+3\)

\(n^3+3-3⋮n+3\)

\(\Rightarrow-3⋮n+3\)

\(\Rightarrow n+3\in\left\{\pm1;\pm3\right\}\)

+) \(n+3=1\Rightarrow n=-2\)

+) \(n+3=-1\Rightarrow n=-4\)

+) \(n+3=3\Rightarrow n=0\)

+) \(n+3=-3\Rightarrow n=-6\)

Ta có:
\(2n+2⋮n+3\)

\(\Rightarrow2n+6-4⋮n+3\)

\(\Rightarrow n\left(n+3\right)-4⋮n+3\)

\(\Rightarrow-4⋮n+3\)

\(\Rightarrow n+3\in\left\{\pm1;\pm2;\pm4\right\}\)

Vì phần trên ta đã tính kết quả \(n+3=\pm1\) nên ta chỉ xét \(n+3=\pm2\) và\(n+3=\pm4\)

+) \(n+3=2\Rightarrow n=-1\)

+) \(n+3=-2\Rightarrow n=-5\)

+) \(n+3=4\Rightarrow n=1\)

+) \(n+3=-4\Rightarrow n=-7\)

Vậy \(n\in\left\{-2;-4;0;-6;-1;-5;1;-7\right\}\)

Bạn xem kĩ xem có đúng ko nhé

22 tháng 9 2016

Đặt \(A=\frac{n^2+2n+2}{n+3}\)

\(A=\frac{n^2+3n-n-3+5}{n+3}=\frac{n.\left(n+3\right)-\left(n+3\right)+5}{n+3}=\frac{\left(n+3\right).\left(n-1\right)+5}{n+3}\)

                                                          \(=\frac{\left(n+3\right).\left(n-1\right)}{n+3}+\frac{5}{n+3}=n-1+\frac{5}{n+3}\)

Để A nguyên thì \(\frac{5}{n+3}\) nguyên

=> \(5⋮n+3\)

=> \(n+3\inƯ\left(5\right)\)

=> \(n+3\in\left\{1;-1;5;-5\right\}\)

=> \(n\in\left\{-2;-4;2;-8\right\}\)

Vậy \(n\in\left\{-2;-4;2;-8\right\}\) thỏa mãn đề bài

12 tháng 3 2017

đấy là lớp 6 mà

17 tháng 9 2017

a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)

\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)

\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)

*\(n+3=1\Rightarrow n=-2\)

*\(n+3=-1\Rightarrow n=-4\)

*\(n+3=11\Rightarrow n=8\)

*\(n+3=-11\Rightarrow n=-14\)

10 tháng 8 2016

Để \(\frac{4n+3}{3n+1}\) thuộc Z thì 4n + 3 chia hết cho 3n + 1

\(\Rightarrow3\left(4n+3\right)⋮3n+1\)

\(\Rightarrow12n+9⋮3n+1\)

\(\Rightarrow\left(12n+4\right)+5⋮3n+1\)

\(\Rightarrow4\left(3n+1\right)+5⋮3n+1\)

\(\Rightarrow5⋮3n+1\)

\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)

+) 3n + 1 = 1\(\Rightarrow n=0\) ( chọn )

+) \(3n+1=-1\Rightarrow n=\frac{-2}{3}\) ( loại )

+) \(3n+1=5\Rightarrow n=\frac{4}{3}\) ( loại )

+) \(3n+1=-5\Rightarrow n=-2\)

Vậy n = 0 hoặc n = -2

 

8 tháng 7 2016

a) A \(=\frac{2n-1}{n-3}=\frac{2n-6}{n-3}+\frac{5}{n-3}\) nguyên

<=> n - 3 thuộc Ư(5) = {-5; -1; 1; 5}

<=> n thuộc {-2; 2; 4; 8}

b) A lớn nhất <=> \(\frac{5}{n-3}\) lớn nhất <=> n - 3 là số nguyên dương nhỏ nhất

<=> n - 3 = 1 <=> n = 4

5 tháng 7 2016

A=\(\frac{2n-1}{n-3}\)

a)Để A có giá trị nguyên thì 2n-1 phải chia hết cho n-3

2n-1

=2n-6+6-1

=2.(n-3)+5

n-3 chia hết cho n-3 nên 2(n-3) chia hết cho n-3

Vậy 5 cũng phải chia hết cho n-3

+n-3=1=>n=4

+n-3=5=>n=8

+n-3=-1=>n=2

+n-3=-5=>n=-2

Vậy n thuộc -2;2;8;4

b)Dễ thấy,để A có giá trị lớn nhất n=8

Chúc em học tốt^^

2 tháng 11 2018

A = \(\frac{2n+5}{n+1}=1\)

=> 2n + 5 = n + 1 

=> 2n - n = 1 - 5

=>    n     = - 4

31 tháng 8 2021

A=5-2n/6n+1 nha mn