Câu 11. Cho tam giác ABC, lấy điểm D sao cho B là trung điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2023

A B C D E M N

1/ Xét tg ABC và tg DBE có

BA=BD (gt)

DE//AC (gt) \(\Rightarrow\widehat{BAC}=\widehat{BDE}\) (góc so le trong)

\(\widehat{ABC}=\widehat{DBE}\) (góc đối đỉnh)

=> tg ABC = tg DBE (g.c.g)

2/

Ta có  tg ABC = tg DBE (cmt) => BC=BE

Xét tư giác ACDE có

BA=BD (gt); BC=BE (cmt) => ACDE là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

=> AE//CD (cạnh đối hbh)

3/

Xét tg ADC có

MA=MC (gt); BA=BD (gt) => BM là đường trung bình của tg ADC 

=> BM//CD

Xét tg ADE có

BA=BD (gt); NE=ND (gt) => BN là đường trung bình của tg ADE

=> BN//AE

Mà CD//AE (cạnh đối hbh)

=> BM//AE (cùng //CD)

\(\Rightarrow BN\equiv BM\) (từ 1 điểm ngoài đường thẳng cho trước chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)

=> M, B, N thẳng hàng

 

 

NM
10 tháng 10 2021

ta có : 

undefined

2 tháng 12 2021
Khó thế ( •-•) >★ cho bn ngôi sao để cố ngắng nha
16 tháng 9 2021

B d d' C A                       

bÀI 1 NHÉ bạn. mình ko alfm đc bài 2.  t ick nha

16 tháng 9 2021

giúp mình với mình đang cần gấp 

ABCMHKEF12I

a) * Vì tam giác ABC cân tại A nên đường cao đồng thời là đường trung tuyến  ( t/c ) 

=> AM là đường trung tuyến ứng với cạnh BC 

=> M là trung điểm của BC   => MB = MC = 1/2 BC

b)-Vì tam giác ABC cân nên góc B = góc C 

Vì MH vuông góc AB, MJ vuông góc AC nên ˆMHB=90o;ˆMKC=90oMHB^=90o;MKC^=90o

Xét tam giác MHB và tam giác MKC có : 

góc MHB = góc MKC ( =90 độ ) 

MB = MC ( cm ở câu a ) 

góc B = góc C (cmt ) 

Suy ra : ΔMHB=ΔMKCΔMHB=ΔMKC ( cạnh huyền - góc nhọn )

=> MH = MK ( cặp cạnh tương ứng ) 

* Gọi I là giao điểm của AM và HK 

Vì tam giác MHB = tam giác MKC ( cmt ) 

=> BH = CK ( cặp canh t/ư) 

Mà AB = AC ( tam giác ABC cân tại A )

=> AB - BH = AC - CK 

=> AH = AK 

=> Tam giác AHK cân tại A ( d/h ) 

Vì tam giác ABC cân tại A nên đường cao đồng thời là đường phân giác 

=> AM là tia phân giác của góc BAC 

Hay AI là tia phân giác của góc BAC 

- Vì tam giác AHK cân nên phân giác đồng thời là đường cao, đường trung tuyến  (t/c) 

=> AI là đường cao đồng thời là trung tuyến của tam giác AHK 

=> AM vuông góc HK tại I  và I là trung điểm của HK 

=> AM là đường trung trực của HK ( d/h ) 

c ) * Vì MH vuông góc AB tại H, E thuộc MH nên AM vuông góc AB tại H

Mà H là trung điểm EM 

=> AB là đường trung trực EM 

=> AE = AM ( t/c ) 

Tương tự : AC là đường trung trực của MF 

=> AF = AM  (t/c) 

Suy ra : AE = AF ( = AM )

=> Tam giác AEF cân tại A ( d/h )