Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\frac{1}{2\times3}=\frac{1}{6}\)
\(\frac{1}{2}-\frac{1}{3}=\frac{3}{6}-\frac{2}{6}=\frac{1}{6}\)
\(\Rightarrow\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)
b.
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+.....+\frac{1}{2005\times2006}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2005}-\frac{1}{2006}\)
\(=1-\frac{1}{2006}\)
\(=\frac{2005}{2006}\)
Chúc bạn học tốt
Câu 11 :
b) Tính \(\dfrac{1}{1.2} + \dfrac{1}{2.3} + \dfrac{1}{3.4} + ... + \dfrac{1}{2005.2006}\)
= \(\dfrac{1}{1} - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} +...+ \dfrac{1}{2005} - \dfrac{1}{2006}\)
= \(1 - \dfrac{1}{2006}\)
= \(\dfrac{2005}{2006}\)
Gọi d là ƯCLN(2n+5,n+3)(d\(\in\)N*)
Ta có:\(2n+5⋮d,n+3⋮d\)
\(\Rightarrow2n+5⋮d,2\cdot\left(n+3\right)⋮d\)
\(\Rightarrow2n+5⋮d,2n+6⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vì ƯCLN(2n+5,n+3)=1
\(\Rightarrow\frac{2n+5}{n+3}\) là phân số tối giản
Gọi d là ƯCLN(2n+5,n+3)(d∈
N*)
Ta có:2n+5⋮d,n+3⋮d
⇒2n+5⋮d,2⋅(n+3)⋮d
⇒2n+5⋮d,2n+6⋮d
⇒(2n+6)−(2n+5)⋮d
⇒1⋮d⇒d=1
Vì ƯCLN(2n+5,n+3)=1
Đặt A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
A=\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{100\cdot100}\)
A<\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
A<\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
A<\(1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Đặt : \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
Vì : \(A< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Vậy ...
A = 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110 + 1/132
A = 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 + 1/10.11 + 1/11.12
A = 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10 + 1/10 - 1/11 + 1/11 - 1/12
A = 1/4 - 1/12 (Cứ hai thằng cạnh nhau cộng lại bằng 0, chỉ còn thằng đầu và thằng cuối)
A = (3 - 1)/12
A = 2/12
A = 1/6
\(A=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
\(A=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)\(A=\dfrac{1}{5}-\dfrac{1}{12}\)
\(A=\dfrac{12}{60}-\dfrac{5}{60}=\dfrac{7}{60}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(=3\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(=3\left(2-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^8}-\frac{1}{2^9}\right)\)
\(=3\left(2-\frac{1}{2^9}\right)=6-\frac{3}{2^9}=6-\frac{3}{512}=\frac{3069}{512}\)
Quy luật của nó là gì vậy sao lại 2+22+.....+28 hoặc 210
Mà bạn lại ghi là 29 quy luật của nó là gì
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}< 1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\) (đpcm)
a,Ta có \(\dfrac{1}{2.3}\)=\(\dfrac{1}{6}\)
\(\dfrac{1}{2}-\dfrac{1}{3}\)=\(\dfrac{3}{6}-\dfrac{2}{6}\)=\(\dfrac{1}{6}\)
=>\(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)
b, \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2005.2006}\)
=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{2005}-\dfrac{1}{2006}\)
=\(\dfrac{1}{1}-\dfrac{1}{2006}\)
=\(\dfrac{2006}{2006}-\dfrac{1}{2006}\)
=\(\dfrac{2005}{2006}\)
Ta có
\(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{\left(n+1\right)-n}{n.\left(n+1\right)}=\dfrac{1}{n.\left(n+1\right)}\)
Vậy \(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)