Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{1}{11}>\dfrac{1}{20}\\ \dfrac{1}{12}>\dfrac{1}{20}\\ ..........\\ \dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\\ \Rightarrow S>\dfrac{10}{20}\\ \Rightarrow S>\dfrac{1}{2}\)
Ta có: \(S< \dfrac{1}{2}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{31}+\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{32}\) \(=\dfrac{1}{2}+\dfrac{3}{11}+\dfrac{2}{31}+\dfrac{2}{32}\)
\(=\dfrac{4909}{5456}< \dfrac{9}{10}\)
\(\Rightarrow S< \dfrac{9}{10}\)
Vậy \(S< \dfrac{9}{10}\)
A, \(\left(\dfrac{8}{15}+\dfrac{14}{23}\right)-\left(\dfrac{5}{15}-\dfrac{9}{23}\right)\)
\(=\dfrac{8}{15}+\dfrac{14}{23}-\dfrac{5}{15}+\dfrac{9}{23}\)
\(=\left(\dfrac{8}{15}-\dfrac{5}{15}\right)+\left(\dfrac{14}{23}+\dfrac{9}{23}\right)\)
\(=\dfrac{3}{15}+1\)
\(=1\dfrac{1}{5}\)
B, \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
\(=1-\dfrac{1}{6}\)
\(=\dfrac{5}{6}\)
a) \(=\dfrac{8}{15}+\dfrac{14}{23}-\dfrac{5}{15}+\dfrac{9}{23}\)
\(=\dfrac{8}{15}-\dfrac{5}{15}+\dfrac{14}{23}+\dfrac{9}{23}\)
\(=\dfrac{1}{5}+1\)
\(=\dfrac{6}{5}\)
b)
\(A=\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{20}\)
\(>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}=\dfrac{10}{20}=\dfrac{1}{2}\)
Vậy \(A>\dfrac{1}{2}\)
b: \(B=2013+\dfrac{2013}{3}+\dfrac{2013}{6}+\dfrac{2013}{10}+\dfrac{2013}{15}\)
\(=2013\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}\right)\)
\(=4026\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)\)
\(=4026\cdot\dfrac{5}{6}=3355\)
?
>