K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2017

Câu 1:

Ta có:\(x\left(x^2-y\right)+x\left(y^2-y\right)-x\left(x^2+y^2\right)\)

      \(=x\left(x^2-y+y^2-y-x^2-y^2\right)\)

      \(=-2xy\)

Tại \(x=\frac{1}{2};y=-100\) PT có dạng:

       \(=-2.\frac{1}{2}.\left(-100\right)=100\)

      

23 tháng 8 2017

CẢM ƠN BN

24 tháng 7 2023

\(a.2x\left(x-1\right)-3\left(x^2+4x\right)+x\left(x+2\right)\) 

\(=2x^2-2x-3x^2-12x+x^2+2x\) 

\(=-12x\) 

\(b.\left(2x-3\right)\left(3x+5\right)-\left(x-1\right)\left(6x+2\right)+3-5x\) 

\(=6x+10x-9x^2-15-6x^2-2x-6x-2+3-5x\) 

\(=-15x^2+3x-14\) 

\(c.\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-y^2\right)\) 

\(=x^3-y^3-x^3+y^3+x^2y-y^3\)

\(=y^3+x^2y\) 

16 tháng 12 2022

\(Q=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{x^2+y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2x^2+2y^2}{2\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{2x^2+2y^2+4xy}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}\)

`B = x^2- 2xy + y^2 + 2x - 10y + 17

`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`

`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.

 

26 tháng 7 2023

Mik cảm ơn

24 tháng 8 2018

B1:

a,\(\left(3x-2\right)\left(x-3\right)=3x^2-9x-2x+6=3x^2-11x+6\)

b,\(\left(2x+1\right)\left(x+3\right)=2x^2+6x+x+3=2x^2+7x+3\)

c,\(\left(x-3\right)\left(3x-1\right)=3x^2-x-9x+3=3x^2-10x+3\)

B2:

1)\(x^2-\left(x+4\right)\left(x-1\right)=x^2-\left(x^2-x+4x-4\right)=x^2-x^2+x-4x+4=-3x+4\)

2)\(x\left(x+2\right)-\left(x-2\right)\left(x+4\right)=x^2+2x-\left(x^2+4x-2x-8\right)\)

\(=x^2+2x-x^2-4x+2x+8=8\)

8 tháng 9 2021

\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

 

8 tháng 9 2021

a,9x^2+y^2+2z^2−18x+4z−6y+20=0

⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0

⇔x=1;y=3;z=−1

b,5x^2+5y^2+8xy+2y−2x+2=0

⇔4(x+y)2+(x−1)2+(y+1)2=0

⇔x=−y;x=1y=−1⇔x=1y=−1

c,5x^2+2y^2+4xy−2x+4y+5=0

⇔(2x+y)^2+(x−1)^2+(y+2)^2=0

⇔2x=−y;x=1;y=−2

⇔x=1;y=−2

d,x^2+4y^2+z^2=2x+12y−4z−14

⇔(x−1)^2+(2y−3)^2+(z+2)^2=0

⇔x=1;y=3/2;z=−2

e: Ta có: x^2−6x+y2+4y+2=0

⇔x^2−6x+9+y^2+4y+4−11=0

⇔(x−3)^2+(y+2)^2=11

Dấu '=' xảy ra khi x=3 và y=-2

 

1: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54\right)\)

\(=x^3+27-x^3-54\)

=-27

2: Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=8x^3+y^3-8x^3+y^3\)

\(=2y^3\)

18 tháng 9 2021

\(1,=x^3+270-x^3-54=-27\\ 2,=8x^3+y^3-8x^3+y^3=2y^3\\ 3,=x^3-3x^2+3x-1-x^3-8+3x^2-48=3x-57\\ 4,=x^3-x-x^3-1=-x-1\\ 5,=8x^3-5\left(8x^3+1\right)=-32x^3-5\\ 6,=27+x^3-27=x^3\\ 7,làm.ở.câu.3\\ 8,=x^3-6x^2+12x-8+6x^2-12x+6-x^3-1+3x\\ =3x-3\)

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.

4 tháng 7 2017

a) \(xy-x-y=2\)
\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=3\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=3\)
Ta có :
\(x-1=1;y-1=3\Rightarrow x=2;y=4\)
\(x-1=3;y-1=1\Rightarrow x=4;y=2\)
\(x-1=-1;y-1=-3\Rightarrow x=0;y=-2\)
\(x-1=-3;y-1=-1\Rightarrow x=-2;y=0\)

b) \(xy-3x+5y=22\)
\(\Rightarrow x\left(y-3\right)+5y=22\)
\(\Rightarrow x\left(y-3\right)+5\left(y-3\right)+15=22\)
\(\Rightarrow x\left(y-3\right)+5\left(y-3\right)=7\)
\(\Rightarrow\left(y-3\right)\left(x+5\right)=7\)
Ta có
\(y-3=1;x+5=7\Rightarrow y=4;x=2\)
\(y-3=7;x+5=1\Rightarrow y=10;x=-4\)
\(y-3=-1;x+5=-7\Rightarrow y=2;x=-12\)
\(y-3=-7;x+5=-1\Rightarrow y=-4;x=-6\)

P/s: ( Còn 2 bài đó làm tương tự )

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Yêu cầu đề là gì vậy bạn?