Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đường thẳng qua O và song song AB có dạng: x−y=0x−y=0
⇒⇒ Tọa độ M là nghiệm của hệ: {x+3y−6=0x−y=0{x+3y−6=0x−y=0 ⇒M(32;32)⇒M(32;32)
Phương trình đường thẳng BC qua M, nhận (1;1)(1;1) là 1 vtpt có dạng:
1(x−32)+1(y−32)=0⇔x+y−3=01(x−32)+1(y−32)=0⇔x+y−3=0
Tọa độ B là nghiệm của hệ: {x−y+5=0x+y−3=0{x−y+5=0x+y−3=0 ⇒B⇒B
M là trung điểm BC ⇒⇒ tọa độ C
O là trung điểm AC ⇒⇒ tọa độ A
O là trung điểm BD
Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý
Lỗi nên bạn tự vẽ hình nha !!
Hình lỗi !!!
=> Tọa độ A là :
\(\hept{\begin{cases}x+y=2\\2x+6y=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{4}\\y=\frac{-7}{4}\end{cases}}}\)
=> Tọa độ B là :
\(\hept{\begin{cases}x+y=2\\x-y=0\end{cases}\Leftrightarrow x=y=1}\)
<=> Tọa độ C là
C(-2 -1 ,1 - 1 )
=> C ( -3 ; 0 )
Vậy A ( \(\frac{15}{4};\frac{-7}{4}\))
B ( 1 ; 1 )
C( -3;0)
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y-2=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow A\left(3;1\right)\)
\(\left\{{}\begin{matrix}x_A+x_B+x_C=3x_G\\y_A+y_B+y_C=3y_G\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B+x_C=6\\y_B+y_C=5\end{matrix}\right.\) (1)
B thuộc AB nên: \(x_B-y_B=2\Rightarrow x_B=y_B+2\)
C thuộc AC nên: \(x_C+2y_C-5=0\Rightarrow x_C=-2y_C+5\)
Thế vào (1) \(\Rightarrow\left\{{}\begin{matrix}y_B+2-2y_C+5=6\\y_B+y_C=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_B=3\Rightarrow x_B=5\\y_C=2\Rightarrow x_C=1\end{matrix}\right.\)
Phương trình BC: \(\dfrac{x-5}{1-5}=\dfrac{y-3}{2-3}\Leftrightarrow x-4y+7=0\)