K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2018

Câu 1: (P) : \(y=ax^2+bx+c\)

Vì (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là -1 và 2

nên (P) cắt hai điểm A(-1;0) và B (2;0)

A (-1;0) ∈ (P) ⇔ 0 = a - b+c (1)

B (2;0) ∈ (P) ⇔ 0 = 4a+2b+c (2)

Mà (P) cắt trục Oy tại điểm có tung độ bằng -2

nên (P) cắt C ( 0;-2)

C (0;-2) ∈ (P) ⇔ -2 = c (3)

Từ (1) ,(2) và (3) ⇔ \(\left\{{}\begin{matrix}a-b+c=0\\4a+2b+c=0\\c=-2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a-b=2\\4a+2b=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\)

Vậy (P) : \(y=x^2-x-2\)

Câu 2: (P) : \(y=ax^2+bx+c\)

Vì (P) có đỉnh I ( -2;-1)

\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=-2\\-1=4a-2b+c\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\end{matrix}\right.\)(1)

Mà (P) cắt trục tung tại điểm có tung độ bằng -3

nên (P) cắt A( 0;-3)

A(0;-3) ∈ (P) ⇔ -3 = c (2)

Từ (1) và (2) ⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\\c=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-4a+b=0\\4a-2b=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=\dfrac{-1}{2}\\b=-2\end{matrix}\right.\)

Vậy (P) : \(y=\dfrac{-1}{2}x^2-2x-3\)

5 tháng 6 2019

Đáp án D

12 tháng 10 2020

Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có

\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)

\(\Rightarrow y=x^2-2x-24\)

19 tháng 12 2022

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}a\cdot0+b\cdot0+c=1\\-\dfrac{b}{2a}=\dfrac{1}{2}\\-\dfrac{b^2-4ac}{4a}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=-2a\\-b^2-4a=3a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=-2a\\-4a^2-4a-3a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\a=-\dfrac{7}{4}\\b=\dfrac{7}{2}\end{matrix}\right.\)

3 tháng 1 2019

Parabol đi qua điểm M suy ra 6 = 25a – 5b + c (1)

Parabol cắt Oy tại điểm có tung độ bằng -2 nên -2 = a.0 + b.0 + c hay c = -2

Vậy  25a – 5b = 8

Chọn B.

Sửa đề: cắt trục tung tại điểm có tung độ bằng -3

Thay x=0 và y=-3 vào (P), ta được:

\(a\cdot0^2+b\cdot0+c=-3\)

=>0+0+c=-3

=>c=-3

vậy: (P): \(y=ax^2+bx-3\)

Tọa độ đỉnh là I(-1;-4) nên ta có:

\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=-1\\-\dfrac{b^2-4\cdot a\cdot\left(-3\right)}{4a}=-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=2a\\\dfrac{b^2+12a}{4a}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a\\\left(2a\right)^2+12a=16a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=2a\\4a^2-4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a\\4a\left(a-1\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=2a\\\left[{}\begin{matrix}a=0\left(loại\right)\\a-1=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

NV
11 tháng 3 2023

Từ điều kiện đề bài: (hiển nhiên a khác 0):

\(\left\{{}\begin{matrix}\dfrac{4ac-b^2}{4a}=-1\\a-b+c=7\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4a-b^2=-4a\\a-b=6\\c=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-6\right)^2-8a=0\\b=a-6\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\left\{2;18\right\}\\b=a-6\\c=1\end{matrix}\right.\)

Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=2x^2-4x+1\\y=18x^2+12x+1\end{matrix}\right.\)

5 tháng 6 2017

Điều kiện để (P): \(y=ax^2+bx+c\) cắt trục hoành tại hai điểm phân biệt là \(\Delta>0\).
Gọi \(x_1;x_2\) là hoành độ của hai giao điểm. Ta có:
\(x_{1,2}=\dfrac{-b\pm\sqrt{\Delta}}{2a}\);
Tọa độ giao điểm là:
\(A\left(\dfrac{-b+\sqrt{\Delta}}{2a};0\right)\); \(A\left(\dfrac{-b-\sqrt{\Delta}}{2a};0\right)\).