Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
Vì \(\frac{x}{a}+\frac{y}{b}=\frac{z}{c}=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1^2\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1\left(dpcm\right)\)
Study ưell
Không chắc
Ta có :\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{3}{2ab}\)
\(A\ge\frac{4}{2ab+a^2+b^2}+\frac{3}{2ab}\)
\(A\ge\frac{4}{\left(a+b\right)^2}+\frac{3}{\frac{\left(a+b\right)^2}{2}}\)
\(A\ge4+6=10\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2=2ab\\a+b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=b\\a+b=1\end{cases}}\Leftrightarrow a=b=\frac{1}{2}\)
Vậy Min A = 10 <=> a = b = 1/2