Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\Rightarrow d:4x+5y+14=0\)
\(d':4x+5y+14=0\)
Ta có: \(\dfrac{4}{4}=\dfrac{5}{5}=\dfrac{14}{14}\) \(\Rightarrow d\equiv d'\)
b) \(\Rightarrow d:x+2y-5=0\)
Ta có: \(\dfrac{1}{2}=\dfrac{2}{4}=\dfrac{-5}{-10}\) \(\Rightarrow d\equiv d'\)
c) Ta có: \(\dfrac{1}{2}\ne\dfrac{1}{1}\) \(\Rightarrow d\) cắt \(d'\)
Phương trình tổng quát \(\Delta\):
\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0
a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)
Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5
<=> \(5y^2-18y-8=0\)
<=>y=4 và y=\(\dfrac{-2}{5}\)
Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))
b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0
Ta có hệ phương trình:
\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)
\(\begin{cases} x=-2\\ y=1 \end{cases}\)
=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d
c. Nhận thấy, điểm A\(\notin\)\(\Delta\)
Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)
Vì M\(\in\Delta\)=> M(2y-4;y)
Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)là \(\overrightarrow{u}\)(2;1)
\(\overrightarrow{AM}\) (2y-4;y-1)
Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)
<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)
<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0
<=> 2(2y-4)+(y-1)=0
<=> 5y-9=0
<=> y= \(\dfrac{9}{5}\)
=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))
a) Xét hệ \(\left\{{}\begin{matrix}4x-10y+1=0\\x+y+2=0\end{matrix}\right.\)
D = 4.1 = 10.1 = -6 ≠ 0
Vậy d1 và d2 cắt nhau
b) Tương tự, ta có: d1 :\(12x-6y+10=0\) ;
d2= \(2x-y-7=0\)
D = 12 . (-1) - (-6).2 = -12 + 12 = 0
Dx = (-6) . (-7) - (-1). 10 = 42 + 10 = 52 ≠ 0
Vậy d1 // d2
c) Tương tự, ta có d1: \(8x+10y-12=0\)
d2:\(4x+5y-6=0\)
D = 8 . 5 - 4 . 10 = 0
Dx = 10. (-6) - (-12) . 5 = 0
Dy = (-12) . 4 - (-6) . 8 = 0
Vậy d1 trùng d2.
Pt của d1 dạng tổng quát:
\(2\left(x-1\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-5=0\)
Pt d2 dạng tổng quát:
\(1\left(x-1\right)-2\left(y-1\right)=0\Leftrightarrow x-2y+1=0\)
Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}2x-y-5=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{11}{3};\frac{7}{3}\right)\)
b/ d' vuông góc d1 nên nhận \(\left(1;2\right)\) là 1 vtpt và \(\left(2;-1\right)\) là 1 vtcp
Phương trình tổng quát:
\(1\left(x-\frac{11}{3}\right)+2\left(y-\frac{7}{3}\right)=0\Leftrightarrow3x+6y-25=0\)
Pt tham số: \(\left\{{}\begin{matrix}x=\frac{11}{3}+2t\\y=\frac{7}{3}-t\end{matrix}\right.\)
Đề câu sau thiếu
a/ \(\overrightarrow{AB}=\left(0;1\right)\Rightarrow\) đường thẳng AB có 1 vtpt là \(\overrightarrow{n_{AB}}=\left(1;0\right)\) và 1 vtcp là \(\overrightarrow{u_{AB}}=\left(0;1\right)\)
- Phương trình tham số AB: \(\left\{{}\begin{matrix}x=4+0.t\\y=1+1.t\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=1+t\end{matrix}\right.\)
- Phương trình tổng quát:
\(1\left(x-4\right)+0\left(y-1\right)=0\Leftrightarrow x-4=0\)
b/ Thay tọa độ x; y từ \(\Delta_1\) vào \(\Delta_2\) ta được:
\(3\left(5+i\right)-2\left(-3+2i\right)-26=0\)
\(\Leftrightarrow-i-5=0\Rightarrow i=-5\)
Thay \(i=-5\) vào pt \(\Delta_1\Rightarrow\left\{{}\begin{matrix}x=5-5=0\\y=-3+2.\left(-5\right)=-13\end{matrix}\right.\)
\(\Rightarrow\Delta_1\) cắt \(\Delta_2\) tại điểm có tọa độ \(\left(0;-13\right)\)
c/ Áp dụng công thức khoảng cách:
\(d\left(M;\Delta\right)=\frac{\left|3.2-4.3+4\right|}{\sqrt{3^2+\left(-4\right)^2}}=\frac{2}{5}\)
d/ Ta có \(\overrightarrow{n_{\Delta1}}=\left(1;2\right)\) và \(\overrightarrow{n_{\Delta2}}=\left(2;-1\right)\)
\(\Rightarrow\overrightarrow{n_{\Delta1}}.\overrightarrow{n_{\Delta2}}=1.2+2.\left(-1\right)=2-2=0\)
\(\Rightarrow\Delta_1\perp\Delta_2\) hay góc giữa \(\Delta_1\) và \(\Delta_2\) bằng \(90^0\)
Cảm mơn bạn đã giúp đỡ mình rất nhiều