Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi d=ƯCLN(3n+11;3n+2)
=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)
=>\(3n+11-3n-2⋮d\)
=>\(9⋮d\)
=>\(d\in\left\{1;3;9\right\}\)
mà 3n+2 không chia hết cho 3
nên d=1
=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau
Bài 2:
a:Sửa đề: \(n+15⋮n-6\)
=>\(n-6+21⋮n-6\)
=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)
mà n>=0
nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)
b: \(2n+15⋮2n+3\)
=>\(2n+3+12⋮2n+3\)
=>\(12⋮2n+3\)
=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)
mà n là số tự nhiên
nên n=0
c: \(6n+9⋮2n+1\)
=>\(6n+3+6⋮2n+1\)
=>\(2n+1\inƯ\left(6\right)\)
=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
a) n + 7 chia hết cho n + 2
n + 2 + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2
=> n + 2 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}
Ta có bảng sau :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
b) 9 - n chia hết cho n - 3
9 - n + 3 - 3 chia hết cho n - 3
9 - (n - 3) - 3 chia hết cho n - 3
6 - (n - 3) chia hết cho n - 3
=> 6 chia hết cho n - 3
=> n -3 thuộc Ư(o6) = {1 ; -1 ;2 ; -2 ;3 ; -3 ; 6 ; -6}
Còn lại giống a
c) n2 + n + 17 chia hết cho n + 1
n.(n + 1) + 17 chia hết cho n + 1
=> 17 chia hết cho n + 1
Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già
a, Do 15 chia hết cho 2n - 1 suy ra 2n -1 thuộc Ư(15)
Ta có Ư(15) = -1 , 1 , 3, -3 , 5 , -5, 15 , -15
nên ta có bảng giá trị sau
2n -1/ -1/ 1/ 3/ -3/ 5/ -5/ 15 /-15
n / 0 /1/2/-1/3/-2/8/-7
Vậy n = 0,1,2,-1,3,-2,8,-7
a) Gọi d là UCLN ( n ; n+1 )
n+1 chia hết cho d
n chia hết cho d
-> n+1-n chia hết cho d
-> 1chia hết cho d
=>N và n+1 là 2 số nguyên tố cùng nhau
=>ĐPCM
Lời giải:
a.
$3n-1\vdots n-2$
$\Rightarrow 3(n-2)+5\vdots n-2$
$\Rightarrow 5\vdots n-2$
$\Rightarrow n-2\in\left\{1; -1;5;-5\right\}$
$\Rightarrow n\in\left\{3; 1; 7; -3\right\}$
b.
$3n+1\vdots 2n-1$
$\Rightarrow 2(3n+1)\vdots 2n-1$
$\Rightarrow 6n+2\vdots 2n-1$
$\Rightarrow 3(2n-1)+5\vdots 2n-1$
$\Rightarrow 5\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{1; -1; 5; -5\right\}$
$\Rightarrow n\in\left\{1; 0; 3; -2\right\}$
a) (3n -1) chia hết (n-2)
⇒3(n-2)+5 chia hết (n-2)
⇒ 5 chia hết (n-2) vì 3(n-2) chia hết (n-2)
⇒(n-2) ϵ Ư(5)
Vậy n-2 =1 hoặc n-2 = -1 hoặc n-2 =5 hoặc n-2 = -5
Vậy n = 3 hoặc n=1 hoặc n=7 hoặc n= -3
b) (3n+1) chia hết (2n-1)
⇒(2n -1 +n +2) chia hết (2n-1)
⇒ (n+2) chia hết (2n-1)
⇒(2n +4) chia hết (2n-1)
⇒(2n -1 +5) chia hết (2n-1)
⇒ 5 chia hết (2n-1)
⇒(2n-1) ϵ Ư (5)
Vậy n = {-1; 0; 3; -2}
\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
\(1+3+5+7+...+\left(2n-1\right)=n^2\)
\(2+4+6+8+...+2n=n\left(n+1\right)\)
Câu 1:
\(-51\left(15-63\right)-15\left(63-51\right)\)
\(=-51\cdot15+51\cdot63-15\cdot63+51\cdot15\)
\(=51\cdot63-15\cdot63=63\left(51-15\right)=63\cdot36=2268\)
Câu 2:
Sửa đề: \(2n^2+3n-22⋮2n-1\)
=>\(2n^2-n+4n-2-20⋮2n-1\)
=>\(-20⋮2n-1\)
mà 2n-1 lẻ
nên \(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)