K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

Giải nhanh giúp mình với

10 tháng 11 2021

Vì AM là trung tuyến ứng với cạnh huyền BC nên \(AM=\dfrac{1}{2}BC=7,5\left(cm\right)\)

Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\\BH=\dfrac{AB^2}{BC}=5,4\left(cm\right)\end{matrix}\right.\)

Áp dụng PTG: \(HM=\sqrt{AM^2-AH^2}=2,1\left(cm\right)\)

Vậy \(S_{AHM}=\dfrac{1}{2}HM\cdot AH=\dfrac{1}{2}\cdot2,1\cdot7,2=7,56\left(cm^2\right)\)

 

4 tháng 4 2019

a, Tìm được BH=9cm, CH=16cm, AB=15cm, và AC=20cm

b, Tìm được  A M H ^ ≈ 73 , 74 0

c,  S A H M = 21 c m 2

20 tháng 11 2021

\(a,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\\ HTL:\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ b,AM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\left(trung.tuyến.ứng.cạnh.huyền\right)\\ \Rightarrow HM=\sqrt{AM^2-AH^2}=\dfrac{119}{26}\left(cm\right)\\ \Rightarrow S_{AHM}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)

27 tháng 10 2021

a: AB=15(cm)

AC=20(cm)

BH=9(cm)
CH=16(cm)

26 tháng 2 2017

a ,   Δ A B C ,   A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H ,   H ⏜ = 90 0   g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b ,   Δ A B C ,   A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2

12 tháng 10 2018

hình tự vẽ nhé

a)  \(AB< AC\) =>  \(BH< CH\)

Áp dụng hệ thức lượng vào tam giác vuông ABC ta được:

\(AH^2=BH.CH\)

=>  \(BH.CH=4\)

mà   \(BH+CH=5\),   

  giải ra ta được:  \(BH=1cm;\)\(CH=4cm\)

Áp dụng hệ thức lượng vào tam giác vuông ABC đc:

AB2 = BH . BC

=> AB2 = 1 . 5 = 5

=>  \(AB=\sqrt{5}cm\)

Tương tự đc:  \(AC=2\sqrt{5}cm\)

12 tháng 10 2018

b)  Tam giác ABC có AM là trung tuyến

=>  AM = BM = MC = BC/2 = 2,5 cm

\(\sin AMH=\frac{AH}{AM}=\frac{2}{2,5}=0,8\)

=>  \(\widehat{AMH}\approx53^08'\)

c)  \(HM=BM-BH=2,5-1=1,5cm\)

\(S_{\Delta AHM}=\frac{AH.HM}{2}=\frac{2.1,5}{2}=1,5cm^2\)

23 tháng 5 2021

A B C H M

Xét tam giác ABH vuông tại H, ta có:

\(AB^2=AH^2+BH^2\)\(=3^2+4^2=25\)

\(\Rightarrow AB=5\left(cm\right)\)

Xét tam giác ABC vuông tại A, theo hệ thức lượng ta có:

\(AH^2=AB\cdot AC\Rightarrow AC=\dfrac{AH^2}{AB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)

Do đó:\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+1,8^2}\simeq5,3\left(cm\right)\)

AM là đường trung tuyến trong tam giác vuông ABC

=> AM=\(\dfrac{1}{2}\) BC= 2,65 \(\left(cm\right)\)