Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đỗ Hương GiangNguyễn Lê Hoàng ViệtNguyễn Huy ThắngNguyễn Huy Tú
Trần Việt LinhVõ Đông Anh TuấnPhương An
Câu 3:
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
EB chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó;ΔABE=ΔHBE
b: Ta có: BA=BH
EA=EH
Do đó: BE là đường trung trực của AH
c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra:EK=EC
d: Ta có: AE=EH
mà EH<EC
nên AE<EC
B A C D E M
a) Xét \(\Delta ABD\) và \(\Delta ADE\) có :
\(AB=AE\left(gt\right)\)
\(\widehat{BAD}=\widehat{EAD}\left(gt\right)\)
\(AD:chung\)
=> \(\Delta ABD\) = \(\Delta ADE\) (c.g.c)
b) Xét \(\Delta MAD\) và \(\Delta CAD\)có :
AD : chung
\(\widehat{DAM}=\widehat{DAE}\left(gt\right)\)
\(AM=AC\left(AB=AE-cmt\right)\)
=> \(\Delta MAD\) = \(\Delta CAD\) (c.g.c)
=> DM = DC (2 cạnh tương ứng)
c) Xét \(\Delta AMC\) có :
AM = AC (cmt)
\(\widehat{AMD}=\widehat{AED}\) (do \(\Delta MAD\) = \(\Delta CAD\) (c.g.c) - cmt)
=> \(\Delta AMC\) cân tại A
Mà : MD = DC
=> AD là đường trung tuyến đồng thời là đường trung trực trong tam giác Cân (tính chất tam giác cân)
=> \(AD\perp CM\) (đpcm)
Bài 3 :
B A C 17 16 M
Vì M là trung điểm của AC => AM = MC = 16 : 2 = 8 ( cm )
Ta có : tam giác AMB vuông tại M
=> AB2 = AM2 + BM2 ( định lý Py - ta - go )
=> 172 = 162 + BM2
=> 289 = 256 + BM2
=> BM2 = 289 - 256
=> BM2 = 33
=> BM = căn 33 hoặc BM = căn âm 33 . Vì BM > 0 => BM = căn 33
Vậy BM = căn 33
Bài 4 :
A B C H 12 5 2 0
Ta có tam giác AHB vuông tại H
=> AB2 = AH2 + HB2
=> AB2 = 122 + 52
=> AB2 = 144 + 25
=> AB2 = 169
=> AB = 13 hoặc AB = -13 . Vì AB > 0 => AB = 13 cm
Ta có tam giác AHC vuông tại H
=> AC2 = AH2 + HC2 ( định lý Py - ta - go )
=> 202 = 122 + HC2
=> 400 = 144 + HC2
=> HC2 = 400 - 144
=> HC2 = 256
=> HC = 16 hoặc HC = -16 > Vì HC > 0 => HC = 16 cm
Chu vi tam giác ABC là :
( 16 + 5 ) + 20 + 13 = 51 ( cm )
Vậy chu vi tam giác ABC là : 51 cm
Bài 2:
a: XétΔABD vuông tại D và ΔACD vuông tại D có
AB=AC
AD chung
Do đó:ΔABD=ΔACD
b: BC=6cm nên BD=3cm
=>AD=4cm
Bài 1:
A B C D E F
Tam giác ABC đều => AB = AC = BC
Mà D , F , E lần lượt là các trung điểm của AB ,BC , CA.
=> AD = AF = FC = CE = BE = BD. (1)
=> góc A = góc B = góc C = 60\(^o\)
=> Tam giác ADF đều vì AD = AF ( cmt) ; góc A = 60\(^o\). (2)
Tương tự, tam giác BDE đều vì BD = BE (cmt); góc B = 60\(^o\) (3)
Tam giác CFE đều vì góc C = 60\(^o\); CF = CE. (cmt).(4)
Từ (1), (2), (3) , (4) => DF = FE = DE.( ĐPCM)
Mình chỉ giải cko bạn 1 bài thôi nha , tại mình đang bận chút!!!!
Chúc bạn học tốt!!!
1)
a) Xét 2 \(\Delta\) \(ABC\) và \(ADE\) có:
\(AB=AD\left(gt\right)\)
\(\widehat{BAC}=\widehat{DAE}\) (vì 2 góc đối đỉnh)
\(AC=AE\left(gt\right)\)
=> \(\Delta ABC=\Delta ADE\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta ABC=\Delta ADE.\)
=> \(\widehat{ABC}=\widehat{ADE}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(BC\) // \(ED.\)
c) Xét 2 \(\Delta\) vuông \(AEH\) và \(AFH\) có:
\(\widehat{AHE}=\widehat{AHF}\left(=90^0\right)\)
\(EH=FH\left(gt\right)\)
Cạnh AH chung
=> \(\Delta AEH=\Delta AFH\) (hai cạnh góc vuông tương ứng bằng nhau).
=> \(AE=AF\) (2 cạnh tương ứng).
Mà \(AE=AC\left(gt\right)\)
=> \(AF=AC\left(đpcm\right).\)
Chúc bạn học tốt!
3:
Xét ΔABD và ΔKBD ta có:
BK = AB (gt)
\(\widehat{ABD}=\widehat{DBK}\) (DB là phân giác của góc ABC)
BD: cạnh chung
=> ΔABD = ΔKBD (c - g - c)
b/ Có ΔABD = ΔKBD (câu a)
=> \(\widehat{DKB}=\widehat{DAB}=90^0\) (2 góc tương ứng)
=> \(DK\perp BC\) (1)
Lại có AH ⊥ BC (gt) (2)
Từ (1) và (2)
=> DK // AH
P/s: Mik làm đến đây thôi vì phải ôn bài nữa!
Câu 1:
\(\dfrac{2^7\cdot9^2}{6^3\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^2}{\left(2\cdot3\right)^3\cdot\left(2^3\right)^2}=\dfrac{2^7\cdot3^4}{2^3\cdot3^3\cdot2^6}=\dfrac{2^7\cdot3^4}{2^9\cdot3^3}=\dfrac{3}{2^2}=\dfrac{3}{4}\)
Câu 2:
\(\left(-2\right)^x=-8\)
\(\Leftrightarrow\left(-2\right)^x=\left(-2\right)^3\)
\(\Leftrightarrow x=3\)
Câu 3:
A B C D M N
a,
Xét ∆ABD và ∆ACD, ta có:
+ AD là cạnh chung [gt]
+ \(\widehat{BAD}=\widehat{CAD}\) [AD là phân giác Â]
+ AB = AC [gt]
=> ∆ABD = ∆ACD [c-g-c]
b,
∆ABD = ∆ACD [cmt]
=> \(\widehat{ADB}=\widehat{ADC}\)
Mà hai góc đó kề bù
=> \(\widehat{ADB}+\widehat{ADC}=180^o\)
\(\Rightarrow\widehat{ADB}=\widehat{ADC}=90^o\)
=> AD ┴ BC
c,
Xét ∆ADM và ∆ADN, ta có:
+ AD chung [gt]
+ \(\widehat{BAD}=\widehat{CAD}\) [AD là phân giác Â]
=> ∆ADM = ∆ADN [ch-gn]
=> DM = DN [ko phải DA]