Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐẶT \(\frac{x}{5}=\frac{y}{2}=k;\frac{x}{5}=k\Rightarrow x=5k;\frac{y}{2}=k\Rightarrow y=2k\)
ta có \(x.y=160\)
thay\(5k.2k=160\)
\(k^2.10=160\)
\(k^2=16\)
\(\Rightarrow k=\pm4\)
do đó
\(\frac{x}{5}=\pm4\Rightarrow\hept{\begin{cases}\frac{x}{5}=4\\\frac{x}{5}=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=5.4=20\\x=5.\left(-4\right)=-20\end{cases}}}\)
\(\frac{y}{2}=\pm4\Rightarrow\hept{\begin{cases}\frac{y}{2}=4\\\frac{y}{2}=-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=2.4=8\\y=2.\left(-4\right)=-8\end{cases}}}\)
vậy các x,y thỏa mãn là \(\left\{x=20;y=8\right\}\left\{x=-20;y=-8\right\}\)
a) X*Y=160
=>X=160/Y (1)
X/5 =Y/2
=> 2x=5y(tính chất tỉ lệ thức)
=>x=5Y/2 (2)
(1),(2)=> 160/y = 5y/2
=> y=8
a) Theo đề ta có :
\(2^{x-1}.3^{y-1}=12^{x+y}\)
\(\Rightarrow2^{x-1}.3^{y-1}=\left(2^2.3\right)^{x+y}\)
\(\Rightarrow2^{x-1}.3^{y-1}=2^{2.\left(x+y\right)}.3^{x+y}\)
\(\Rightarrow2^{x-1}=2^{2x+2y}\)và \(3^{y-1}=3^{x+y}\)
\(\Rightarrow x-1=2x+2y\) và \(y-1=x+y\)
\(\Rightarrow x-2x=2y+1\) và \(y-y=x+1\)
\(\Rightarrow-x=2y+1\) và \(x+1=0\)
\(\Rightarrow-\left(-1\right)=2y+1\) và \(x=-1\)
\(\Rightarrow y=\frac{1-1}{2}=0\) và x = -1
___________________________________________________________________________________________________________
b) \(3^x=9^{y-1}\) và \(8^y=2^{x+8}\)
\(\Rightarrow3^x=\left(3^2\right)^{y-1}\) và \(\left(2^3\right)^y=2^{x+8}\)
\(\Rightarrow3^x=3^{2y-2}\) và \(2^{3y}=2^{x+8}\)
\(\Rightarrow x=2y-2\) và \(3y=x+8\)
Thay x = 2y-2 vào 3y = x+8 , ta có :
\(3y=2y-2+8\)
\(\Rightarrow3y=2y+6\)
\(\Rightarrow3y-2y=6\)
\(\Rightarrow y=6\)
Thay y = 6 vào x = 2y-2 ta có :
\(x=2.6-2=10\)
Vậy x = 10 ; y = 6
a) \(\frac{2}{x-3}=\frac{5}{4}\)(ĐKXĐ : x khác 3)
=> \(2\cdot4=5\left(x-3\right)\)
=> \(8=5x-15\)
=> \(5x-15=8\)
=> \(5x=23\)=> x = 23/5 (tm)
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
=> 3(x + 1) = 5(4x - 2)
=> 3x + 3 = 20x - 10
=> 3x + 3 - 20x + 10 = 0
=> 3x - 20x + 3 + 10 = 0
=> 3x - 20x = -13
=> -17x = -13
=> x = 13/17(tm)
2. a) Nếu đề như thế này : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x - 2y + 2z = 10
=> \(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
=> x = 5/3.2 = 10/3 , y = 5/3.3 = 5, z = 5/3.5 = 25/3 ( nên sửa lại đề bài này nhá)
b) Bạn tự làm
c) \(\frac{x}{y}=\frac{3}{5}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{2x}{6}=\frac{3y}{15}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-11}=-\frac{12}{11}\)
=> \(x=-\frac{12}{11}\cdot3=-\frac{36}{11},y=-\frac{12}{11}\cdot5=-\frac{60}{11}\)
d) Đặt x/3 = y/4 = k
=> x = 3k, y = 4k
Theo đề bài ta có => xy = 3k.4k = 12k2
=> 48 = 12k2
=> k2 = 48 : 12 = 4
=> k = 2 hoặc k = -2
Với k = 2 thì x = 3.2 = 6 , y = 4.2 = 8
Với k = -2 thì x = 3(-2) = -6 , y = 4(-2) = -8
Bài 1.
a) \(\frac{2}{x-3}=\frac{5}{4}\)( ĐK : x khác 3 )
<=> 2.4 = ( x - 3 ).5
<=> 8 = 5x - 15
<=> 8 + 15 = 5x
<=> 23 = 5x
<=> 23/5 = x ( tmđk )
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
<=> ( x + 1 ).3 = 5( 4x - 2 )
<=> 3x + 3 = 20x - 10
<=> 3x - 20x = -10 - 3
<=> -17x = -13
<=> x = 13/17
Bài 2.
a) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x-2y+2z=10\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\\x-2y+2z=10\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\cdot2=\frac{10}{3}\\y=\frac{5}{3}\cdot3=5\\z=\frac{5}{3}\cdot5=\frac{25}{3}\end{cases}}\)
b) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{z}{4}=\frac{y}{6}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}\times\frac{1}{6}=\frac{y}{5}\times\frac{1}{6}\\\frac{z}{4}\times\frac{1}{5}=\frac{y}{6}\times\frac{1}{5}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}\\\frac{z}{20}=\frac{y}{30}\\x-y+z=20\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}=\frac{z}{20}\\x-y+z=20\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{30}=\frac{z}{20}=\frac{x-y+z}{12-30+20}=\frac{20}{2}=10\)
\(\Rightarrow\hept{\begin{cases}x=10\cdot12=120\\y=10\cdot30=300\\z=10\cdot20=200\end{cases}}\)
c) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{6}=\frac{3y}{15}\\2x-3y=12\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-9}=-\frac{4}{3}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{4}{3}\cdot3=-4\\y=-\frac{4}{3}\cdot5=-\frac{20}{3}\end{cases}}\)
d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
xy = 48
<=> 3k.4k= 48
<=> 12k2 = 48
<=> k2 = 4
<=> k = ±2
+) Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=4\cdot2=8\end{cases}}\)
+) Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=4\cdot\left(-2\right)=-8\end{cases}}\)
Tớ làm lần lượt nhé.
Ta có:\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)
\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta được:
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{\left(x-1\right)+\left(y-2\right)+\left(z-3\right)}{3+4+5}=\frac{\left(x+y+z\right)-\left(1+2+3\right)}{12}=\frac{18-6}{12}=1\)
\(\Rightarrow\frac{x-1}{3}=1\Rightarrow x=4\)
\(\frac{y-2}{4}=1\Rightarrow y=6\)
\(\frac{z-3}{5}=1\Rightarrow z=3\)
\(\frac{x-y}{2}=\frac{x+y}{12}=\frac{xy}{200}=\frac{x-y+x+y}{2+12}=\frac{2x}{14}=\frac{x}{7}=k\)
\(\Rightarrow x=7k\left(1\right);x+y=12k\left(2\right);xy=200k\left(3\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow y=12k-7k=5k\)
\(\Rightarrow xy=5k\cdot7k=35k^2\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow200k=35k^2\Leftrightarrow200=35k\Leftrightarrow k=\frac{200}{35}\)
\(\Rightarrow x=7\cdot\frac{200}{35}=40\)
\(y=5\cdot\frac{200}{35}=\frac{1000}{35}\)
P/S:số khá xấu.sợ sai.nhưng cách làm là như vậy.
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
bạn ơi bạn bt làm chưa vậy mình củng đang tìm bài này
a) Ta có: \(2^{x+1}.3^y=12^x\)
\(\Leftrightarrow2^{x+1}.3^y=4^x.3^x\)
\(\Leftrightarrow2^{x+1}.3^y=2^{2x}.3^x\)
\(\Rightarrow\left\{{}\begin{matrix}2^{x+1}=2^{2x}\\3^y=3^x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\y=x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}1=2x-x\\y=x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1=x\\y=x\end{matrix}\right.\)\(\Leftrightarrow x=y=1\)
Vậy: x=y=1
c) \(10^x:5^y=20^y\)
\(\Leftrightarrow10^x=20^y.5^y\)
\(\Leftrightarrow10^x=100^y\)
\(\Leftrightarrow10^x=10^{2y}\)
\(\Rightarrow x=2y\) \(\forall x,y\in N\)
Vậy x=2y với mọi x;y \(\in N\)