Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3,\)Áp dụng bđt Mincopski \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)hai lần có
\(VT\ge\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{yz}+\sqrt{zx}\right)^2}+\sqrt{z+xy}\)
\(\ge\sqrt{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)
\(=\sqrt{x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)
\(=\sqrt{1+2t+t^2}\left(t=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(=\sqrt{\left(t+1\right)^2}=t+1=VP\left(Đpcm\right)\)
\(2,\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{a}.\sqrt{b}}}=\sqrt{\sqrt{ab}}\left(đpcm\right)\)
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
4a) Sử dụng bất đẳng thức AM-GM ta có :
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)
Đẳng thức xảy ra khi x = y > 0
3
dat \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}=\frac{a}{b}\) dk (a,b)=1 a,b thuoc N*
khi do \(bx-by\sqrt{2014}=ay-az\sqrt{2014}\)
\(\Leftrightarrow bx-ay=\left(by-az\right)\sqrt{2014}\)
\(\Rightarrow\hept{\begin{cases}bx-ay=0\\by-az=0\end{cases}\Leftrightarrow\hept{\begin{cases}bx=ay\\by=az\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{a}{b}\Rightarrow xz=y^2}\)
khi do \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-y^2=\left(x+z-y\right)\left(x+y+z\right)\)
vi x^2 +y^2 +z^2 la so nt va x+y+z>1
nen \(\hept{\begin{cases}x+y+z=x^2+y^2+z^2\\x+z-y=1\end{cases}}\)
giai ra ta co x=y=z=1
Câu !! .1)\(PT< =>2x-2\sqrt{x-8}-6\sqrt{x}+2=0\)(đk:\(x\ge8\))
\(< =>x-8-2\sqrt{x-8}+1+x-6\sqrt{x}+9=0\)
\(< =>\left(\sqrt{x-8}-1\right)^2+\left(\sqrt{x}-3\right)^2=0\)
\(< =>\hept{\begin{cases}\sqrt{x-8}=1\\\sqrt{x}=3\end{cases}}\)
\(< =>x=9\)(thỏa mãn đk)
vậy.....
ai giải giúp bạn này đi TT mik cũng muốn xem lời giải bài này
Câu 1: Đặt bt là A>0 ta có:
\(2A=3-\frac{a^2b}{2+a^2b}-\frac{b^2c}{2+b^2c}-\)\(\frac{c^2a}{2+c^2a}\)
Áp dụng bđt Cosi ta đc \(2A\ge3-\frac{1}{3}\left(\sqrt[3]{a^4b^2}+\sqrt[3]{b^4c^2}+\sqrt[3]{c^4a^2}\right)\)
\(\ge3-\frac{1}{3}\left(\frac{2ab+a^2}{3}+\frac{2bc+b^2}{3}+\frac{2ca+c^2}{3}\right)\)\(=3-\frac{1}{3}\left(\frac{\left(a+b+c\right)^2}{3}\right)=3-3\cdot\frac{1}{3}=2\)
\(\Rightarrow A\ge1\)
Bạn đăng từng bài thôi :)
em cx ms lm xong bài kia =))