Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1. ( 2x + 3y )2 + 2( 2x + 3y ) + 1 = [ ( 2x + 3y ) + 1 ]2
C2. ( x + 2 )2 = ( 2x - 1 )2
<=> ( x + 2 )2 - ( 2x - 1 )2 = 0
<=> [ x + 2 + ( 2x - 1 ) ][ x + 2 - ( 2x - 1 ) ] = 0
<=> [ 3x + 1 ][ 3 - x ] = 0
<=> \(\orbr{\begin{cases}3x+1=0\\3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=3\end{cases}}\)
b) ( x + 2 )2 - x + 4 = 0
<=> x2 + 4x + 4 - x + 4 = 0
<=> x2 - 3x + 8 = 0
Mà ta có x2 - 3x + 8 = x2 - 3x + 9/4 + 23/4 = ( x - 3/2 )2 + 23/4 ≥ 23/4 > 0 với mọi x
=> Phương trình vô nghiệm
C3. a) A = x2 - 2x + 5 = x2 - 2x + 4 + 1 = ( x - 2 )2 + 1
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMin = 1 , đạt được khi x = 2
b)B = x2 - x + 1 = x2 - x + 1/4 + 3/4 = ( x - 1/2 )2 + 3/4
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy BMin = 3/4, đạt được khi x = 1/2
c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
C = [ ( x - 1 )( x + 6 )][ ( x + 2 )( x + 3 ]
C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
C = ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Dấu " = " xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x + 5 = 0
<=> x = 0 hoặc x = -5
Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5
d) D = x2 + 5y2 - 2xy + 4y + 3
= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2
= ( x - y )2 + ( 2y + 1 )2 + 2
\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+1\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)
=> \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{1}{2}\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)
Vậy DMin = 2 , đạt được khi x = y = -1/2
C4. a) ( Cái này tìm được Min k tìm được Max )
A = x2 - 4x - 2 = x2 - 4x + 4 - 6 = ( x - 2 )2 - 6
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge-6\)
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMin = -6 , đạt được khi x = 2
b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x+\frac{3}{4}\right)+\frac{49}{8}\le\frac{49}{8}\)
Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4
Vậy BMax = 49/8 , đạt được khi x = -3/4
c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9
\(-\left(x+1\right)^2\le0\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu " = " xảy ra <=> x + 1 = 0 => x = -1
Vậy CMax = 9 , đạt được khi x = -1
d) D = -8x2 + 4xy - y2 + 3 ( Cái này mình đang tính ạ )
C5. a) A = 25x2 - 20x + 7
A = 25x2 - 20x + 4 + 3
A = ( 5x2 - 2 )2 + 3 ≥ 3 > 0 với mọi x ( đpcm )
b) B = 9x2 - 6xy + 2y2 + 1
B = ( 9x2 - 6xy + y2 ) + y2 + 1
B = ( 3x - y )2 + y2 + 1 ≥ 1 > 0 với mọi x, y ( đpcm )
c) C = x2 - 2x + y2 + 4y + 6
C = ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 1
C = ( x - 1 )2 + ( y + 2 )2 + 1 ≥ 1 > 0 với mọi x,y ( đpcm )
d) D = x2 - 2x + 2
D = x2 - 2x + 1 + 1
D = ( x - 1 )2 + 1 ≥ 1 > 0 với mọi x ( đpcm )
\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)
\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)
\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)
\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(x^2+7x+10=t\), ta có:
\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)
\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)
Bài 1.
a. -3xy2 . (4x2 - xy + 2y2)= -12x3y2 + 3x2y3 - 6xy4
b. 3xn-2yn-1 . (xn+2 - 2xn+1yn + yn+1) = 3x2nyn-1 - 6x2n-1y2n-1 + 3xn-2y2n
Bài 2.
a. 2x(x+3)-3x2(x+2)+x(3x2+4x-6)
= 2x2+6x-3x3-6x2+3x3+4x2-6x
= 0
Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.
b. 3x(2x2-x)-2x2(3x+1)+5(x2-1)
= 6x3-3x2-6x3-2x2+5x2-5
= -5
Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.
c. 4(x-6)-x2(3x+2)+x(5x-4)+3x2(x-1)
= 4x-24-3x3-2x2+5x2-4x+3x3-3x2
= -24.
Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.
d. xy(3x2-6xy)-3(x3y-2x2y2-1)
= 3x3y-6x2y2-3x3y+6x2y2+3
= 3.
Vậy giá trị của biểu thức trên không phụ thuộc vào các biến x,y.
a,(5x3-4x2+7x):x
=\(5x^2-4x+7\)
b, (x5+12x3-9x2):4x2
=\(\dfrac{1}{4}x^3+3x-\dfrac{9}{4}\)
c,d tương tự
các bài khác bn tự lm nhé mk bận rồi xl nhìu nha
Câu 1. Tìm x, biết:
\(a.3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
\(36x^2-12x-36x^2+27x=30\)
\(15x=30\)
\(x=2\)
\(b.2x\left(x-1\right)+x\left(5-2x\right)=15\)
\(2x^2-2x+5x-2x^2=15\)
\(3x=15\)
\(x=5\)
Câu 2. Điền vào chỗ trống để được kết quả đúng.
\(a.\left(x^2-2xy\right)\left(-3x^2y\right)=-3x^4y+6x^3y^2\)
\(b.x^2\left(x-y\right)+y\left(x^2+y\right)=x^3+y^2\)
Câu 3. Điền vào chỗ trống để được kết quả đúng.
\(a.\left(2x+1\right)^2\)
\(b.\left(x+2y\right)^2\)
Câu 4. Viết các đa thức sau dưới dạng bình phương của một tổng:
\(a.\left(2x-3y\right)^2+2\left(2x+3y\right)+1=\left(2x-3y+1\right)^2\)
\(b.x^2+4xy+4y^2=\left(x+2y\right)^2\)
Câu 5. Chứng minh đẳng thức:
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vậy đẳng thức đã được chứng minh ( làm tóm gọn thôi , trình bày vào vở thì tự nhé )
Câu 6. Điền vào chỗ trống để được kết quả đúng:
\(a.8x^6+36x^4y+54x^2y^2+27y^3=\left[\left(2x^2\right)+3y\right]^3\)
\(b.x^3-6x^2y+12xy^2-8y^3=\left(x-2y\right)^3\)
Câu 11. Rút gọn biểu thức:
\(A=\left(x^2-3x+9\right)\left(x+3\right)-\left(54+x^3\right)\)
\(A=x^3+27-54-x^3=-27\)
Câu 8. Viết biểu thức sau dưới dạng tích:
\(a.8x^3-y^3=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(b.27x^3+8=\left(3x+2\right)\left(9x^2-6x+4\right)\)
Câu 9. Chứng minh đẳng thức:
\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+b^3=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)
Vậy đẳng thức đã được chứng minh ( làm tóm gọn thôi , trình bày vào vở thì tự nhé )
Câu 10. Điền vào chỗ trống để được đẳng thức đúng:
\(a.\left(2x\right)^3+y^3=\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(b.\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+b^3\)
Câu 7. Rút gọn biểu thức:
\(A=\left(x+3\right)\left(x-3x+9\right)-\left(54+x^3\right)=3x-2x^2+27-54-x^3=3x-2x^2-27-x^3\)
( Chắc rút vậy là hết cỡ rồi ==" )
Câu 12 . Coi lại đề @@
Câu 13 .
\(y^2+4y+4=\left(2+y\right)^2=\left(98+2\right)^2=100^2=10000\)