\(\dfrac{cosx-2}{1-2sinx}\)

Câu2 : Tìm m để hà...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2021

1.

Hàm số xác định khi: \(1-2sinx\ne0\Leftrightarrow sinx\ne\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{6}+k2\pi\\x\ne\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

5 tháng 10 2021

2.

Đặt \(t=cosx\left(t\in\left[-1;1\right]\right)\)

Hàm số xác định trên R khi:

\(m-1+2cosx\ge0\forall x\in R\)

\(\Leftrightarrow m\ge f\left(t\right)=1-2t\forall x\in R\)

\(\Leftrightarrow m\ge maxf\left(t\right)=f\left(-1\right)=3\)

Vậy \(m\ge3\)

27 tháng 6 2021

\(1.\hept{\begin{cases}2-2\cos x\ge0\\\sqrt{2-2\cos x}-2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}\cos x\le1\left(đ\right)\\\cos x\ne-1\end{cases}}\Leftrightarrow x\ne\pi+k2\pi\left(k\in Z\right)\)

\(2.\hept{\begin{cases}\sin3x\ne0\\1+\sin3x\ge0\\1-\sqrt{1+\sin3x}\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x\ne k\pi\\\sin3x\ge-1\left(đ\right)\\\sin3x\ne0\end{cases}}\Leftrightarrow x\ne\frac{k\pi}{3}\left(k\in Z\right)\)

\(3.\hept{\begin{cases}\sin2x\ne0\\\sin x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ne k\pi\\x\ne k\pi\end{cases}}\Leftrightarrow x\ne\frac{k\pi}{2}\left(k\in Z\right)\)

21 tháng 6 2019

Cộng đồng học tập online | Học trực tuyến

Lần sau có bài em đăng trong link này để đc các bạn giúp đỡ nhé!

+)\(y=\frac{1}{\sqrt{1+\cos4x}}\)

ĐKXĐ: \(\cos4x+1>0\Leftrightarrow\cos4x>-1\Leftrightarrow\cos4x\ne-1\)

\(\Leftrightarrow4x\ne\pi+k2\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\), k thuộc Z

TXĐ: \(ℝ\backslash\left\{\frac{\pi}{4}+\frac{k\pi}{2}\right\}\), k thuộc Z

+) \(y=\sqrt{\tan x-\sqrt{3}}\)

ĐKXĐ: \(\hept{\begin{cases}\tan x-\sqrt{3}\ge0\\x\ne\frac{\pi}{2}+k\pi\end{cases}\Leftrightarrow\hept{\begin{cases}\tan x\ge\tan\frac{\pi}{3}\\x\ne\frac{\pi}{2}+k\pi\end{cases}\Leftrightarrow}\frac{\pi}{3}+k\pi\le x< \frac{\pi}{2}+k\pi}\)

TXĐ:...

NM
23 tháng 8 2021

để hàm số xác định với mọi x thuộc R thì 

\(2m\cos^2x+\left(2-m\right)\cos x+4m-1\ge0\Leftrightarrow m\left(2cos^2x-cosx+4\right)\ge1-2cosx\)

mà \(2cos^2x-cosx+4>0\) nên :

\(m\ge\frac{1-2cosx}{2cos^2x-cosx+4}\)\(\Leftrightarrow\)\(m\ge max\left(\frac{1-2cosx}{2cos^2x-cosx+4}\right)=\frac{3}{7}\)

vậy điều kiện của m là : \(m\ge\frac{3}{7}\)

29 tháng 8 2019

ĐK: sin^2 (2x) ≥ 0 <=> sin 2x ≥ 0 <=> x ≥ kπ/2

=> HSXĐ <=> 1 + cot^2 (2x) ≥ 0

<=> cot^2 (2x) ≥ -1

<=> cot 2x = 0

<=> x = π/2 + k2π

2 tháng 9 2019

có chỗ nào sai các bạn góp ý cho mình nhéBài 2:  Phương trình lượng giác cơ bản

1 tháng 8 2018

1. Do \(\cos x+2>0\forall x\in R\) \(\Rightarrow\) Hàm số xác định \(\forall x\in R\)

\(y=\dfrac{\sin x+1}{\cos x+2}\)

\(\Leftrightarrow\)\(y\cos x-\sin x=1-2y\)

pt có nghiệm \(\Leftrightarrow y^2+\left(-1\right)^2\ge\left(1-2y\right)^2\)

\(\Leftrightarrow3y^2-4y\le0\)

\(\Leftrightarrow0\le y\le\dfrac{4}{3}\)

2. \(y=\dfrac{\cos x+2\sin x+3}{2\cos x-\sin x+4}\)

\(\Leftrightarrow\left(2y-1\right)\cos x-\left(y+2\right)\sin x=3-4y\)

pt có nghiệm \(\Leftrightarrow\left(2y-1\right)^2+\left(y+2\right)^2\ge\left(3-4y\right)^2\)

\(\Leftrightarrow11y^2-24y+4\le0\)

\(\Leftrightarrow\dfrac{2}{11}\le y\le2\)

kiểm tra giúp mình xem có sai sót gì không...

2 tháng 8 2018

bạn ơi tsao chỗ pt có nghiệm chỗ câu 1 lại ra bất pt vậy

22 tháng 5 2017

a) \(D=R\backslash\left\{1\right\}\)
b) \(y\left(x\right)\) xác định khi:
\(cos\dfrac{x}{3}\ne0\Leftrightarrow\dfrac{x}{3}\ne\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x\ne\dfrac{3\pi}{2}+k3\pi\)
\(D=R\backslash\left\{\dfrac{3\pi}{2}+k3\pi\right\};k\in Z\)
c) \(y\left(x\right)\) xác định khi:
\(sin2x\ne0\Leftrightarrow2x\ne k\pi\)\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\).
\(D=R\backslash\left\{\dfrac{k\pi}{2}\right\};k\in Z\)
d) \(y\left(x\right)\) xác định khi:
\(x^2-1\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\).
\(D=R\backslash\left\{1;-1\right\}\)