\(\sqrt{7-2x}\) + \(\sqrt{3x+4}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

a) TXĐ: \(D=R\).
b) \(TXD=D=R\backslash\left\{4\right\}\)
c) Đkxđ: \(\left\{{}\begin{matrix}4x+1\ge0\\-2x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{4}\\x\le\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-1}{4}\le x\le\dfrac{1}{2}\).
TXĐ: D = \(\left[\dfrac{-1}{4};\dfrac{1}{2}\right]\)

3 tháng 5 2017

a) Đkxđ: \(\left\{{}\begin{matrix}x+9\ge0\\x^2+8x-20\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\\left\{{}\begin{matrix}x\ne2\\x\ne-10\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\x\ne2\end{matrix}\right.\)
Txđ: D = [ - 9; 2) \(\cup\) \(\left(2;+\infty\right)\)
b) Đkxđ: \(\left\{{}\begin{matrix}2x+1\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{2}\\x\ne3\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{\dfrac{-1}{2};3\right\}\)
c) \(x^2+2x-5\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne-1+\sqrt{6}\\x\ne-1-\sqrt{6}\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{-1+\sqrt{6};-1-\sqrt{6}\right\}\)


2 tháng 4 2017

a) Công thức có nghĩa với x ∈ R sao cho 2x + 1 ≠ 0.

Vậy tập xác định của hàm số là:

D = { x ∈ R/2x + 1 ≠ 0} =

b) Tương tự như câu a), tập xác định của hàm số đã cho là:

D = { x ∈ R/x2 + 2x - 3 ≠ 0}

x2 + 2x – 3 = 0 ⇔ x = -3 hoặc x = 1

Vậy D = R {- 3; 1}.

c) có nghĩa với x ∈ R sao cho 2x + 1 ≥ 0

có nghĩa với x ∈ R sao cho 3 - x ≥ 0

Vậy tập xác định của hàm số là:

D = D1 ∩ D2, trong đó:

D1 = {x ∈ R/2x + 1 ≥ 0} =

D2 = {x ∈ R/3 - x ≥ 0} =


25 tháng 12 2018

Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0

=> C ≥ 0

Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7

C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4

Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5

25 tháng 12 2018

\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)

Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)

2 tháng 4 2017

a) Tập xác định của f(x) :

A = {x ∈ R | x2 + 3x + 4 ≥ 0 và -x2 + 8x – 15 ≥ 0}

- x2 + 3x + 4 có biệt thức Δ = 32 – 16 < 0

Theo định lí dấu của tam thức:

x2 + 3x + 4 ≥ 0 ∀x ∈R

-x2 + 8x – 15 = 0 ⇔ x1 = 3, x2 = 5

-x2 + 8x – 15 > 0 ⇔ 3 ≤ x ≤ 5 ⇒ A = [3, 5]

b) A/B = [3, 4]

R\(A\B) = (-∞, 3) ∪ (4, +∞)