K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2018

Câu 1 :

\(y=-\left(m^2+1\right)x+m-4\)

Để hàm số nghịch biến trên R

⇔ a < 0

\(-\left(m^2+1\right)\)< 0

\(m^2+1\) > 0

\(m^2\) > -1 ∀x ∈ R

⇔ m ∈ R

Vậy với mọi giá trị của m thì hàm số nghịch biến trên R

Câu 2 :

Gọi (d) : y =ax+b

Vì (d) cắt trục hoành tại điểm x = 3

nên (d) sẽ cắt điểm A(3;0)

A(3;0) ∈ (d) ⇔ 0 = 3a +b

Mà M(-2;4) ∈ (d) ⇔ 4 = -2a +b

Ta có : \(\left\{{}\begin{matrix}3a+b=0\\-2a+b=4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=\dfrac{-4}{5}\\b=\dfrac{12}{5}\end{matrix}\right.\)

Vậy a=\(\dfrac{-4}{5}\) và b= \(\dfrac{12}{5}\)

Câu 3 :

(d) : \(y=2x+m+1\)

a) Vì (d) cắt trục hoành tại điểm có hoành độ bằng 3

nên (d) sẽ cắt điểm A(3;0)

A(3;0) ∈ (d) ⇔ 0 = 2 .3 + m+1⇔ m= -7

Vậy m = -7

b) Vì (d) cắt trục tung tại điểm có tung độ bằng -2

nên (d) sẽ cắt điểm B( 0;-2)

B( 0;-2) ∈ (d) ⇔ -2 = 0.2+m+1 ⇔ m = -3

Vậy m = -3

9 tháng 10 2018

Đáp án C

17 tháng 7 2018

Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3 suy ra điểm A(3; 0) thuộc đồ thị hàm số hay 0 = 2.3 + m + 1 suy ra m = -7

Chọn C.

NV
8 tháng 3 2023

Từ giả thiết ta có:

\(\left\{{}\begin{matrix}a< 0\\\dfrac{4ab-4}{4a}=4\\-\dfrac{1}{a}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)

\(\Rightarrow\) (P) cắt Oy tại điểm có tung độ bằng 3

8 tháng 3 2023

Tuyệt vời quá anh Lâm ơi~

yeu

22 tháng 12 2021

a: Thay x=3 và y=0 vào (1), ta được:

\(6-3m=0\)

hay m=2

30 tháng 10 2019

Đáp án A

21 tháng 4 2017

Đáp án D

27 tháng 12 2018

 Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng -2 suy ra điểm A(0; -2) thuộc đồ thị hàm số hay -2 = 2.0 + m + 1 suy ra m = -3

Chọn A.

a: Vì (d) đi qua A(3;-4) và (0;2) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a+b=-4\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)

b: vì (d)//y=-4x+4 nên a=-4

Vậy:(d): y=-4x+b

Thay x=-2 và y=0 vào (d), ta được:

b+8=0

hay b=-8

a: Khi m=1 thì (P): y=x^2+4x+1+1=x^2+4x+2

Thay y=-1 vào (P), ta được:

x^2+4x+2=-1

=>x^2+4x+3=0

=>(x+1)(x+3)=0

=>x=-1 hoặc x=-3

b: Phươngtrình hoành độ giao điểm là:

x^2+(2m+2)x+m^2+m=0

Δ=(2m+2)^2-4(m^2+m)

=4m^2+8m+4-4m^2-4m=4m+4

Để (P) cắt Ox tại hai điểm phân biệt thì 4m+4>0

=>m>-1

\(\left|x_1-x_2\right|=\sqrt{5}\)

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)

=>(2m+2)^2-4(m^2+m)=5

=>4m^2+8m+4-4m^2-4m=5

=>4m+4=5

=>m=1/4