Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-x^2-5y^2+2xy-4x+20y+13\)
\(=-x^2+2xy-y^2-4y^2-4x+4y+16y+13\)
\(=-\left(x^2-2xy+y^2\right)-\left(4y^2-16y+16\right)-\left(4x-4y\right)+29\)
\(=-\left(x-y\right)^2-4\left(y-2\right)^2-4\left(x-y\right)-4+25\)
\(=-\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]-4\left(y-2\right)^2+25\)
\(=-\left(x-y+2\right)^2-4\left(y-2\right)^2+25\)
\(A_{max}=25\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y+2=0\\y=2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
\(B=-7x^2-y^2+4xy+16x-2y+17.\)
\(=-4x^2+4xy-y^2-3x^2+12x-12+4x-2y+29\)
\(=-\left(2x-y\right)^2-3\left(x-2\right)^2+2\left(2x-y\right)^2-1+30\)
\(=-\left[\left(2x-y\right)^2-2\left(2x-y\right)^2+1\right]-3\left(x-2\right)^2+30\)
\(=-\left(2x-y-1\right)^2-3\left(x-2\right)^2+30\)
\(\Rightarrow B_{max}=30\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-y-1=0\\x=2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
1.a) 2x4-4x3+2x2
=2x2(x2-2x+1)
=2x2(x-1)2
b) 2x2-2xy+5x-5y
=2x(x-y)+5(x-y)
=(2x+5)(x-y)
2.
a) 4x(x-3)-x+3=0
=>4x(x-3)-(x-3)=0
=>(4x-1)(x-3)=0
=> 2 TH:
*4x-1=0 *x-3=0
=>4x=0+1 =>x=0+3
=>4x=1 =>x=3
=>x=1/4
vậy x=1/4 hoặc x=3
b) (2x-3)^2-(x+1)^2=0
=> (2x-3-x-1).(2x-3+x+1)=0
=>(x-4).(3x-2)=0
=> 2 TH
*x-4=0
=> x=0+4
=> x=4
*3x-2=0
=>3x=0-2
=>3x=-2
=>x=-2/3
vậy x=4 hoặc x=-2/3
\(x^2-2xy+5y^2-4y+1=0\)
=> \(\left(x^2-2xy+y^2\right)+\left(4y^2-4y+1\right)=0\)
=> \(\left(x-y\right)^2+\left(2y-1\right)^2=0\)
Ta có: \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(2y-1\right)^2\ge0\forall y\)
=> \(\left(x-y\right)^2+\left(2y-1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y-1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y\\2y=1\end{cases}}\) <=> \(x=y=\frac{1}{2}\)
Vậy x = y = 1/2 (tm)
\(x^2-2xy+5y^2-4y+1=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(2y-1\right)^2=0\)
Mà (x-y)2và (2y-1)2 > 0
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\2y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\2y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}}\)
a) Ta có: A = 5x - 2x2 + 1 = -2(x2 - 5/2x + 25/16) +33/8 = -2(x - 5/4)2 + 33/8
Ta luôn có: -2(x - 5/4)2 \(\le\)0\(\forall\)x
=> -2(x - 5/4)2 + 33/8 \(\le\)33/8\(\forall\)x
Dấu "=" xảy ra <=> x - 5/4 = 0 <=> x = 5/4
vậy Max của A = 33/8 tại x = 5/4
b) B = (x - 2)(9 - x) = 9x - x2 - 18 + 2x = -(x2 - 11x + 121/4) + 49/4 = -(x - 11/2)2 + 49/4
Ta luôn có: -(x - 11/2)2 \(\le\)0 \(\forall\)x
=> -(x - 11/2)2 + 49/4 \(\le\)49/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 11/2 = 0 <=> x = 11/2
Vậy Max của B = 49/4 tại x = 11/2
a, A= -2x2 + 5x + 1
= -2 ( x2 - 5/2 x ) + 1
\(=-2\left(x^2-\frac{2.5}{4}x+\frac{25}{16}\right)+\frac{33}{8}\)
= \(\frac{33}{8}-2\left(x-\frac{5}{4}\right)^2\)\(\le\frac{33}{8}\forall x\)
Dấu = xảy ra khi x - 5/4=0
\(\Rightarrow\)x=5/4
vậy GTLN của A = 33/8 khi x=5/4
b.
B=9x - 18 + 2x - x2
= -x2 + 11x - 18
= - ( x2 - 11x) -18
= - (x2 - 2.x . 11/2 + 121/4 ) + 49/4
= 49/4 - (x-11/2)2
Dấu = xảy ra khi x-11/2 = 0
suy ra x = 11/2
vậy GTLN của B = 49/4 kgi x=11/2
#mã mã#
a) VÌ 2x2 + y2 - 2y - 6x + 2xy + 5 = 0 nên
2(2x2 + y2 - 2y - 6x + 2xy + 5) = 0
4x^2+2y^2-4y-12x+4xy+10=0
(4x^2+4xy+y^2)-6(2x+y)+9+(y^2-2y+1)=0
(2x+y)^2-6(2x+y)+9+(y-1)^2=0
(2x+y-3)^2+(y-1)^2=0(*)
vì (2x+y-3)^2>=0 và(Y-1)^2>=0nên (*) xảy ra khi
(2x+y-3)^2=0<=>2x-2=0<=>x=1
(Y-1)^2=0<=>y=1
Bài 1:
\(f\left(x\right)=6x^2-x+1=0\)
\(\Leftrightarrow x\left(6x-1\right)=-1\)
\(\Leftrightarrow\) Khi x=1 thì 6x-1=-1 <=> 6x=0<=> x=0(không thõa mãn)
Khi x=-1 thì 6x-1=1 <=> 6x=2 <=> 2/6=1/3(không thõa mãn)
vậy phương trình đã cho vô ngiệm
Bài 2: Mk ko bt làm xin lỗi bạn
A = 5 + 2xy + 14y - x^2 - 5y^2 - 2x
= -(x^2 + y^2 + 1 - 2xy + 2x - 2y) - (4y^2 - 12y + 9) + 5 + 1 + 9
= -(x-y+1)^2 - (2y-3)^2 + 15 ≤ 15
Dấu "=" xảy ra <=> x-y+1 = 0
2y-3 = 0
<=> x = y-1
y = 3/2
<=> x = 3/2 - 1 = 1/2
hnay toàn gặp thần đồng toán học ko zậy =))