\(2x^2+mx-2=0\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

a) \(x+2=0\Leftrightarrow x=-2\)
Phương trình: \(\dfrac{mx}{x+3}=3m-1\) (*) có đkxđ: \(x\ne-3\)
Vì cặp phương trình tương đương nên phương trình (*) có nghiệm là x = -2:
\(\dfrac{2m}{2+3}+3m-1=0\) \(\Leftrightarrow\dfrac{2m}{5}+3m=1\)\(\Leftrightarrow m\left(\dfrac{2}{5}+3\right)=1\)
\(\Leftrightarrow\dfrac{17}{5}m=1\) \(m=\dfrac{5}{17}\)
Vậy \(m=\dfrac{5}{17}\) thì hai phương trình tương đương.

3 tháng 5 2017

b) Pt (1) \(x^2-9=0\) có hai nghiệm là: \(x=3;x=-3\).
Để cặp phương trình tương đương thì phương trình (2) \(2x^2+\left(m-5\right)x-3\left(m+1\right)=0\) có nghiệm là: \(x=3;x=-3\).
Suy ra: \(\left\{{}\begin{matrix}2.3^2+\left(m-5\right).3-3.\left(m+1\right)=0\\2.\left(-3\right)^2+\left(m-5\right).\left(-3\right)-3.\left(m+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0=0\\30-6m=0\end{matrix}\right.\) \(\Leftrightarrow m=5\)
Vậy m = 5 thì hai phương trình tương đương.

6 tháng 4 2017

a) \(3x-2=0\Leftrightarrow x=\dfrac{2}{3}\)

Thay \(x=\dfrac{2}{3}\)

\(\left(m+3\right)\)\(\dfrac{2}{3}-m+4=0\)

\(\dfrac{2}{3}m+2-m+4=0\)

\(\dfrac{-1}{3}m+6=0\)

\(\dfrac{-1}{3}m=-6\)

\(m=18\)

5 tháng 6 2017

b) \(x+2=0\)\(\Leftrightarrow x=-2\).
Để hai phương trình tương đương thì phương trình \(m\left(x^2+3x+2\right)+m^2x+2=0\) có duy nghiệm là \(x=-2\).
Suy ra: \(m\left[\left(-2\right)^2+3.\left(-2\right)+2\right]+m^2.\left(-2\right)+2=0\)\(\Leftrightarrow m^2=1\)\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\).
Thay \(m=1\) vào phương trình \(m\left(x^2+3x+2\right)+m^2x+2=0\) ta được:
\(x^2+3x+2+x+2=0\)\(\Leftrightarrow\left(x+2\right)^2=0\)\(\Leftrightarrow x=-2\).
Vậy \(m=1\) thỏa mãn,
Thay \(m=-1\) vào phương trình:
\(-1\left(x^2+3x+2\right)+\left(-1\right)^2x+2=0\)\(\Leftrightarrow-x^2-2x=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\) .
Vậy \(m=-1\) không thỏa mãn.

14 tháng 4 2017

Lời giải

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)

(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)

\(\Leftrightarrow8x^2+14mx+3m^2=0\)

\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m

\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)

so sánh (3) với (1)

\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)

m <0 hiển nhiên đúng

xét khi m\(\ge\)0

\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)

Biện luận

(I)với m <0 có hai nghiệm

\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)

(II) với m= 0 có nghiệm kép x=0

(III) m>0 vô nghiệm

 

 

3 tháng 5 2017

b) \(\left|2x+m\right|=\left|x-2m+2\right|\Leftrightarrow\left[{}\begin{matrix}2x+m=x-2m+2\left(1\right)\\2x+m=-\left(x-2m+2\right)\left(2\right)\end{matrix}\right.\)
Xét (1): \(2x+m=x-2m+2\Leftrightarrow x=-3m+2\).
Xét (2): \(2x+m=-\left(x-2m+2\right)\Leftrightarrow x=\dfrac{m-2}{3}\)
Biện luận:
Với mọi m phương trình đều có hai nghiệm:
\(x=-3m+2;x=\dfrac{m-2}{3}\).

5 tháng 5 2017

a​) \(\left|2x-5m\right|=2x-3m\)
​Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
​Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
​Biện luận:
​Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
​Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
​Với m < 0 phương trình vô nghiệm.

5 tháng 5 2017

b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
​Biện luận:
​Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\) 2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2 3. bất phương trình nào sau đây tương đương với...
Đọc tiếp

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số

A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\)

2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số

A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2

3. bất phương trình nào sau đây tương đương với bất phương trình x+5>0

A. (x-1)2 (x+5) > 0 B. x2 (x+5) >0

C. \(\sqrt{x+5}\left(x+5\right)\)> 0 D. \(\sqrt{x+5}\left(x-5\right)\)>0

4. bất phương trình ax+b > 0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a\ne0\\b=0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

5.bất phương trình ax+b>0 có tập nghiệm R khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

6.bất phương trình ax+b \(\le\)0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

7.tập nghiệm S của bất phương trình \(5x-1\ge\frac{2x}{5}+3\)

A. R B. (-∞; 2) C. (-\(\frac{5}{2}\); +∞) D. \([\frac{20}{23}\); +∞\()\)

MONG MỌI NGƯỜI GIẢI CHI TIẾT GIÚP EM Ạ TvT

0