\(y=2x^2+4x-7\)trên đoạn
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

mk làm 1 câu còn mấy câu còn lại bn làm tương tự cho quen nha .

ta có : \(2x^2+4x-7=2x^2+4x+2-9=2\left(x+1\right)^2-9\)

\(x\in\left[-3;4\right]\)\(\Rightarrow50\ge2\left(x+1\right)^2-9\ge-9\)

\(\Rightarrow y_{min}=-9\) khi \(x=-1\)\(y_{max}=50\) khi \(x=4\)

vậy ...................................................................................................................

11 tháng 8 2018

vì sao mak ra sô 50 vậy bn

15 tháng 8 2019

TA có: \(y=-x^4+4x^2-3\)

              \(=-\left(x^4-4x^2+4\right)+1\) 

               \(=-\left(x^2-1\right)^2+1\le1\)

Vì \(y\in\left[-2;3\right]\) 

=>..........................

Đến đây dễ rồi bạn tự làm nốt nhé

11 tháng 1 2021

y = (x² - 1)(x + 3)(x + 5)

= [(x - 1)(x + 5)].[(x + 1)(x + 3)]

= (x² + 4x - 5)(x² + 4x + 3)

= [x² + 4x - 1) - 4].[(x² + 4x - 1) + 4]

= (x² + 4x - 1)² - 16 ≥ - 16

- Khi x = 0 ⇒ y = - 15

- Khi x = 1 ⇒ y = 0

- Khi x² + 4x - 1 = 0 ⇔ x = √5 - 2 ( loại giá trị x = - √5 - 2 < 0) ⇒ y = - 16

Vậy trên đoạn [0; 1] thì :

GTNN của y = - 16 khi x = √5 - 2

GTLN của y = 0 khi x = 1

30 tháng 10 2016

1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.

Áp dụng BĐT BCS , ta có

\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)

\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)

Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5

30 tháng 10 2016

2/ Áp dụng bđt AM-GM dạng mẫu số ta được

\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)

\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)

Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)

Vậy ......................................

DD
7 tháng 7 2021

\(f\left(x\right)=4x+\frac{3}{\left(x+1\right)^2}=2x+2+2x+2+\frac{3}{\left(x+1\right)^2}-4\ge3\sqrt[3]{\left(2x+2\right)^2.\frac{3}{\left(x+1\right)^2}}-4\)

\(=3\sqrt[3]{48}-4\)

Dấu \(=\)khi \(2x+2=\frac{3}{\left(x+1\right)^2}\Leftrightarrow\left(x+1\right)^3=\frac{3}{2}\Leftrightarrow x=\sqrt[3]{\frac{3}{2}}-1\).

12 tháng 8 2018

câu 1) ta có : \(M=\left(x^2-x\right)^2+\left(2x-1\right)^2=x^4-2x^3+x^2+4x^2-4x+1\)

\(=\left(x^2-x+2\right)^2-3=\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right)^2-3\)

\(\Rightarrow\dfrac{1}{16}\le M\le61\)

\(\Rightarrow M_{min}=\dfrac{1}{16}\)khi \(x=\dfrac{1}{2}\) ; \(M_{max}=61\) khi \(x=3\)

câu 2) điều kiện xác định : \(0\le x\le2\)
đặt \(\sqrt{2x-x^2}=t\left(t\ge0\right)\)

\(\Rightarrow M=-t^2+4t+3=-\left(t-2\right)^2+7\)

\(\Rightarrow3\le M\le7\)

\(\Rightarrow M_{min}=3\)khi \(x=0\) ; \(M_{max}=7\) khi \(x=2\)

câu 3) ta có : \(M=\left(x-2\right)^2+6\left|x-2\right|-6\ge-6\)

\(\Rightarrow M_{min}=-6\) khi \(x=2\)

12 tháng 8 2018

4) điều kiện xác định \(-6\le x\le10\)

ta có : \(M=5\sqrt{x+6}+2\sqrt{10-x}-2\)

áp dụng bunhiacopxki dạng căn ta có :

\(-\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\le5\sqrt{x+6}+2\sqrt{10-x}\le\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\)

\(\Leftrightarrow-4\sqrt{29}\le5\sqrt{x+6}+2\sqrt{10-x}\le4\sqrt{29}\)

\(\Rightarrow-2-4\sqrt{29}\le B\le-2+4\sqrt{29}\)

\(\Rightarrow M_{max}=-2+4\sqrt{29}\) khi \(\dfrac{\sqrt{x+6}}{5}=\dfrac{\sqrt{10-x}}{2}\Leftrightarrow x=\dfrac{226}{29}\)

\(\Rightarrow M_{min}=-2-4\sqrt{29}\) dấu của bđt này o xảy ra câu 5 lm tương tự

NV
15 tháng 4 2019

\(y'=4x^3-12x^2-2x+10=2\left(x-1\right)\left(2x^2-4x-5\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{2-\sqrt{14}}{2}\\x=\frac{2+\sqrt{14}}{2}\end{matrix}\right.\)

Xét trên đoạn \(\left[-1;4\right]\) ta có:

\(y\left(-1\right)=-9\) ; \(y\left(0\right)=-3\); \(y\left(4\right)=21\); \(y\left(\frac{2-\sqrt{14}}{2}\right)=y\left(\frac{2+\sqrt{14}}{2}\right)-\frac{37}{4}\)

So sánh các giá trị ta thấy \(\left\{{}\begin{matrix}y_{max}=y\left(4\right)=21\\y_{min}=y\left(\frac{2-\sqrt{14}}{2}\right)=y\left(\frac{2+\sqrt{14}}{2}\right)=-\frac{37}{4}\end{matrix}\right.\)

21 tháng 10 2016

dùng máy tính bỏ túi fx-570es plus là ra ngay

 

2 tháng 11 2020

a, \(g\left(x\right)=2x-m\) trên \(\left[1;2\right]\)

\(g\left(1\right)=2-m;g\left(2\right)=4-m\)

\(f\left(x\right)=\left|g\left(x\right)\right|=\left|2x-m\right|\) trên \(\left[1;2\right]\)

\(TH1:4-m< 0\leftrightarrow m>4\)

\(\left[1;2\right]\)