Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét 2A =2+2^2+2^3+.....+2^2019
-A=1+2+2^2+...+2^2018
A=(2^2019)-1 <2^2019
b)theo câu a ta có A+1=2^2019-1+1=2^2019=2^(x+1)
2019=x+1 =>x=2018
1
A5.S=5+5^2+5^3+5^4+...+5^21
5S-S=(5+5^2+5^3+5^4+...+5^21)-(1+5+5^2+^3+...+5^20)
4.S=5^21-1
S=5^21-1:4
^ LÀ MŨ
A:1=1^21
TA CÓ:5^21-1^21:4
5 KHÔNG CHIA HẾT CHO 6
1KHONG CHIA HẾT CHO 6
4KHOONG CHIA HẾT CHO6
SUY RA KHÔNG CHIA HẾT
B TUONG TỰ
3A
X+6CHIA HẾT CHO X+2
(X+2+4)CHIA HẾT CHO X+2
X+2:X+2
SUY RA 4:X+2
SUY RA X+2 LÀ ƯỚC CỦA 4
Ư(4)={1:2:4}
LẬP BẢNG
x+2 | 1 | 2 | 4 |
x | rỗng | 0 | 2 |
suy ra :x={0:2}
xin lỗi bạn,có một số câu mình không biết làm
Bài 1:
Giải :
Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\) \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)
\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)
\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)
\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)
\(\Rightarrow E⋮6\)
Do \(E⋮6\)nên \(E\div6\)dư 0
Vậy \(E\div6\)có số dư bằng \(0\)
Bài 2:
Giải :
Ta có: \(n.\left(n+2\right).\left(n+7\right)\)
\(=\left(n^2+2n\right).\left(n+7\right)\)
\(=n^3+2n^2+7n^2+14n\)
\(=n^3+9n^2+14n\)
\(=n.\left(n^2+9n+14\right)\)
b) n mũ 2 + 2006 là hợp số
hai câu còn lại ko bt
Hok tốt
^_^
a) \(A=2+2^2+...+2^{2024}\)
\(2A=2^2+2^3+...+2^{2025}\)
\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)
\(A=2^{2025}-2\)
b) \(2A+4=2n\)
\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)
\(\Rightarrow2^{2026}-4+4=2n\)
\(\Rightarrow2n=2^{2026}\)
\(\Rightarrow n=2^{2026}:2\)
\(\Rightarrow n=2^{2025}\)
c) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)
d) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)
\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)
\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)
Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7
⇒ A : 7 dư 2
Câu 1:
Ta có: (a+b)+(b+c)+(c+a)= 11+ 3+2 = 16 = 2(a+b+c) => a+b+c = 16/2 = 8
=> c = (c+a+b) - ( a+b) = 8 - 11 = -3
=> a = (c+a+b) - (b+c) = 8 - 3 = 5
=> b = (c+a+b) - ( c+a) = 8 - 2 =6
Vậy : a =5; b= 6 ; c=-3
Câu 3:
A = 2 + 22 + 23 + ... + 260
= ( 2+ 22) + ( 23+24) + ... + (259 +260)
= ( 2+ 22) + 22.( 2+ 22) + 24( 2+ 22) +...+ 258( 2+ 22)
= 6 + 22.6+ 24.6 + ...+ 258.6
= 6.( 1+ 22+24+...+258) ⋮ 6
mà A ⋮ 6 => A ⋮ 3 ( vì 6 ⋮ 3)