K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
22 tháng 6

Câu 1:

\(2\sin x-\sqrt{3}=0\\ \Leftrightarrow\sin x=\dfrac{\sqrt{3}}{2}=\sin\dfrac{\pi}{3}\\ \Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{\pi}{3}+k_12\pi\\x_2=\pi-\dfrac{\pi}{3}+k_22\pi=\dfrac{2\pi}{3}+k_22\pi\end{matrix}\right.\left(k_1,k_2\inℤ\right)\)

Mà: \(x\in\left[0;2\pi\right]\) do đó nên: \(k_1=0,k_2=0\)

Vậy tập nghiệm pt là: \(S=\left\{\dfrac{\pi}{3};\dfrac{2\pi}{3}\right\}\) (2 nghiệm => D)

Câu 2:

Vì: \(-1\le\cos x\le1\forall x\)

\(\Rightarrow-1\le m+1\le1\\ \Leftrightarrow-2\le m\le0\)

Mà: \(m\inℤ\Rightarrow m\in\left\{-2;-1;0\right\}\) (C)

Câu 1: \(2\cdot sinx-\sqrt{3}=0\)

=>\(sinx=\dfrac{\sqrt{3}}{2}\)

=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{3}+k2\Omega\\x=\Omega-\dfrac{\Omega}{3}+k2\Omega=\dfrac{2}{3}\Omega+k2\Omega\end{matrix}\right.\)

Để \(x\in\left[0;2\Omega\right]\) thì \(\left[{}\begin{matrix}\dfrac{\Omega}{3}+k2\Omega\in\left[0;2\Omega\right]\\\dfrac{2}{3}\Omega+k2\Omega\in\left[0;2\Omega\right]\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2k+\dfrac{1}{3}\in\left[0;2\right]\\2k+\dfrac{2}{3}\in\left[0;2\right]\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2k\in\left[-\dfrac{1}{3};\dfrac{5}{3}\right]\\2k\in\left[-\dfrac{2}{3};\dfrac{4}{3}\right]\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}k\in\left[-\dfrac{1}{6};\dfrac{5}{6}\right]\\k\in\left[-\dfrac{1}{3};\dfrac{2}{3}\right]\end{matrix}\right.\Leftrightarrow k=0\)

=>Chọn B

Câu 2:

Để phương trình cosx =m+1 có nghiệm thì -1<=m+1<=1

=>-2<=m<=0

mà m nguyên

nên \(m\in\left\{-2;-1;0\right\}\)

=>Chọn C

14 tháng 3 2017

Đáp án C

Sử dụng tính đơn điệu của hàm số, đánh giá số nghiệm của phương trình.

Vậy, có 3 giá trị nguyên của m thỏa mãn yêu cầu đề bài.

1 tháng 8 2017

Đáp án A

28 tháng 8 2021

1.

\(3cos2x-7=2m\)

\(\Leftrightarrow cos2x=\dfrac{2m-7}{3}\)

Phương trình đã cho có nghiệm khi:

\(-1\le\dfrac{2m-7}{3}\le1\)

\(\Leftrightarrow2\le m\le5\)

28 tháng 8 2021

2.

\(2cos^2x-\sqrt{3}cosx=0\)

\(\Leftrightarrow cosx\left(2cosx-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\) Có 4 nghiệm \(\dfrac{\pi}{2};\dfrac{3\pi}{2};\dfrac{\pi}{6};\dfrac{11\pi}{6}\) thuộc đoạn \(\left[0;2\pi\right]\)

23 tháng 9 2019

Đáp án D

29 tháng 5 2019

28 tháng 1 2019

9 tháng 12 2018

Đáp án B

PT

 

Đặt 

Để (1) có nghiệm thì (2) có nghiệm  có nghiệm

Suy ra có nghiệm 

Xét hàm số 

Lập bảng biến thiên hàm số 

13 tháng 3 2019

2 tháng 5 2019

Chọn đáp án D

Phương pháp

Cho ba số a, b, c lập thành CSN thì ta có: b 2 = a c .

Cách giải

Ta có:  ( x - 1 ) ( x - 3 ) ( x - m ) = 0

Phương trình đã cho có 3 nghiệm phân biệt

+) Giả sử 1; 3; m lập thành 1 CSN tăng

+) Giả sử m; 1; 3 lập thành 1 CSN tăng

+) Giả sử 1; m; 3 lập thành 1 CSN tăng

Vậy có 3 giá trị m thỏa mãn