Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\dfrac{3x-6}{x^2-6x+5}=\dfrac{3x-6}{x^2-x-5x+5}=\dfrac{3x-6}{x\left(x-1\right)-5\left(x-1\right)}=\dfrac{3x-6}{\left(x-1\right)\left(x-5\right)}\)
\(\dfrac{5x-5}{2x^2-2}=\dfrac{5x-5}{2\left(x^2-1\right)}=\dfrac{5x-5}{2\left(x-1\right)\left(x+1\right)}\)
MTC: \(2\left(x-1\right)\left(x+1\right)\left(x-5\right)\)
\(\dfrac{3x-6}{x^2-6x+5}=\dfrac{3x-6}{x^2-x-5x+5}=\dfrac{3x-6}{x\left(x-1\right)-5\left(x-1\right)}\\ =\dfrac{3x-6}{\left(x-1\right)\left(x-5\right)}=\dfrac{2\left(x+1\right)\left(3x-6\right)}{2\left(x-1\right)\left(x+1\right)\left(x-5\right)}\)
\(\dfrac{5x-5}{2x^2-2}=\dfrac{5x-5}{2\left(x^2-1\right)}=\dfrac{5x-5}{2\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x-5\right)\left(5x-5\right)}{2\left(x-1\right)\left(x+1\right)\left(x-5\right)}\)
Bài giải
a) \(\dfrac{1}{x+2}=\dfrac{x.\left(x-2\right)}{\left(x+2\right)\left(x-2\right).x}=\dfrac{x^2-2x}{x\left(x+2\right)\left(x-2\right)}\)
\(\dfrac{8}{2x-x^2}=\dfrac{8}{x\left(2-x\right)}=-\dfrac{8}{x\left(x-2\right)}=-\dfrac{8.\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
b) \(x^2+1=\dfrac{x^2+1}{1}=\dfrac{\left(x^2+1\right)\left(x^2-1\right)}{x^2-1}=\dfrac{x^4-1}{x^2-1}\)
\(\dfrac{x^4}{x^2-1}\) giữ nguyên.
c) \(\dfrac{x^3}{x^3-3x^2y+3xy^2-y^3}=\dfrac{x^3}{\left(x-y\right)^3}=\dfrac{x^3.y}{\left(x-y\right)^3.y}=\dfrac{x^3y}{y\left(x-y\right)^3}\)
\(\dfrac{x}{y^2-xy}=\dfrac{x}{y.\left(y-x\right)}=-\dfrac{x}{y.\left(x-y\right)}=-\dfrac{x\left(x-y\right)^2}{y.\left(x-y\right).\left(x-y\right)^2}=\dfrac{x\left(x-y\right)^2}{y.\left(x-y\right)^3}\)
a) \(\dfrac{3x}{2x+4}\) và \(\dfrac{x+3}{x^2-4}\)
Phân tích các mẫu thức thành nhân tử :
\(2x+4 = 2(x+2)\)
\(x^2 - 4 = (x-2)(x+2)\)
MTC : \(2(x+2)(x-2)\)
Nhân tử phụ của mẫu thức : \(2x + 4\) là \((x - 2)\)
\(x^2 - 4\) là \(2\)
QĐ: \(\dfrac{3x}{2x+4}=\dfrac{3x}{2\left(x+2\right)}=\dfrac{3x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}\)
\(\dfrac{x+3}{x^2-4}=\dfrac{x+3}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x+3\right)}{2\left(x+2\right)\left(x-2\right)}\)
b) \(\dfrac{x+5}{x^2+4x+4}\) và \(\dfrac{x}{3x+6}\)
Phân tích các mẫu thức thành nhân tử :
\(x^2+4x+4 = (x+2)^2\)
\(3x + 6\) \(= 3(x+2)\)
MTC : \(3(x+2)^2\)
Nhân tử phụ của mẫu thức : \(x^2 + 4x +4 \) là \(3\)
\(3x + 6\) là \((x+2)\)
QĐ : \(\dfrac{x+5}{x^2+4x+4}=\dfrac{\left(x+5\right)}{\left(x+2\right)^2}=\dfrac{3\left(x+5\right)}{3\left(x+2\right)^2}\)
\(\dfrac{x}{3x+6}=\dfrac{x}{3\left(x+2\right)}=\dfrac{x\left(x+2\right)}{3\left(x+2\right)^2}\)
a: \(=\dfrac{1-2x+3+2y+2y-4}{6x^3y}=\dfrac{-2x+4y}{6x^3y}=\dfrac{-2\left(x-2y\right)}{6x^3y}=\dfrac{-x+2y}{3x^3y}\)
b: \(=\dfrac{x^2-2+2-x}{x\left(x-1\right)^2}=\dfrac{x\left(x-1\right)}{x\left(x-1\right)^2}=\dfrac{1}{x-1}\)
c: \(=\dfrac{3x+1+x^6-3x}{x^2-3x+1}\)
\(=\dfrac{x^6+1}{x^2-3x+1}\)
d: \(=\dfrac{x^2+38x+4+3x^2-4x-2}{2x^2+17x+1}\)
\(=\dfrac{4x^2+34x+2}{2x^2+17x+1}=2\)
Bài 7:(Sbt/25) Dùng tính chất cơ bản của phân thức hoặc quy tắc đổi dấu để biến mỗi cặp phân thức sau thành một cặp phân thức bằng nó và có cùng mẫu thức :
a. \(\dfrac{3x}{x-5}\) và \(\dfrac{7x+2}{5-x}\)
Ta có:
\(\dfrac{3x}{x-5}=\dfrac{-\left(3x\right)}{-\left(x-5\right)}=\dfrac{-3x}{5-x}\)
\(\dfrac{7x+2}{5-x}\)
Vậy .....
b.\(\dfrac{4x}{x+1}\) và \(\dfrac{3x}{x-1}\)
Ta có:
\(\dfrac{4x}{x+1}=\dfrac{4x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x^2-4x}{x^2-1}\)
\(\dfrac{3x}{x-1}=\dfrac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x^2+3x}{x^2-1}\)
Vậy ..........
c. \(\dfrac{2}{x^2+8x+16}\) và \(\dfrac{x-4}{2x+8}\)
Ta có:
\(\dfrac{2}{x^2+8x+16}=\dfrac{4}{2\left(x+4\right)^2}\)
\(\dfrac{x-4}{2x+8}=\dfrac{\left(x-4\right)\left(x+4\right)}{2\left(x+4\right)\left(x+4\right)}=\dfrac{x^2-16}{2\left(x+4\right)^2}\)
Vậy .........
d. \(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\) và \(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)
Ta có:
\(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x\left(x-2\right)}{\left(x+1\right)\left(x-3\right)\left(x-2\right)}=\dfrac{2x^2-4x}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}\)
\(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}=\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}=\dfrac{x^2-9}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}\)
Vậy .........
a: \(\dfrac{5}{2x+6}=\dfrac{5\left(x-3\right)}{2\left(x+3\right)\left(x-3\right)}\)
3/x^2-9=6/2(x+3)(x-3)
b: \(\dfrac{2x}{x^2-8x+16}=\dfrac{2x}{\left(x-4\right)^2}=\dfrac{6x^2}{3x\left(x-4\right)^2}\)
\(\dfrac{x}{3x^2-12x}=\dfrac{x}{3x\left(x-4\right)}=\dfrac{x\left(x-4\right)}{3x\left(x-4\right)^2}\)
c: \(\dfrac{x+y}{x}=\dfrac{\left(x+y\right)\cdot\left(x-y\right)}{x\left(x-y\right)}\)
x/x-y=x^2/x(x-y)
e: \(\dfrac{1}{x+2}=\dfrac{2x-x^2}{x\left(x+2\right)\left(2-x\right)}\)
\(\dfrac{8}{2x-x^2}=\dfrac{8\left(x+2\right)}{x\left(2-x\right)\left(2+x\right)}\)
a) Tìm MTC:
2x + 6 = 2(x + 3)
x2 – 9 = (x – 3)(x + 3)
MTC = 2(x – 3)(x + 3) = 2(x2 – 9)
Nhân tử phụ:
2(x – 3)(x + 3) : 2(x + 3) = x – 3
2(x – 3)(x + 3) : (x2 – 9) = 2
Qui đồng:
b) Tìm MTC:
x2 – 8x + 16 = (x – 4)2
3x2 – 12x = 3x(x – 4)
MTC = 3x(x – 4)2
Nhân tử phụ:
3x(x – 4)2 : (x – 4)2 = 3x
3x(x – 4)2 : 3x(x – 4) = x – 4
Qui đồng:
click mh nha
a) MTC: \(12x^3y^3\)
\(\dfrac{3}{4x^3y^2}=\dfrac{3\cdot3y}{4x^3y^2\cdot3y}=\dfrac{9y}{12x^3y^3}\)
\(\dfrac{2}{3xy^3}=\dfrac{2\cdot4x^2}{3xy^3\cdot4x^2}=\dfrac{8x^2}{12x^3y^3}\)
b) MTC: \(x\left(x-3\right)^2\)
\(\dfrac{5}{x^2-6x+9}=\dfrac{5}{\left(x-3\right)^2}=\dfrac{5x}{x\left(x-3\right)^2}\)
\(\dfrac{3}{x^2-3x}=\dfrac{3}{x\left(x-3\right)}=\dfrac{3\left(x-3\right)}{x\left(x-3\right)^2}=\dfrac{3x-9}{x\left(x-3\right)^2}\)