Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chữ số hàng đơn vị của số cần tìm là \(x\)(điều kiện: \(x\in Z;0\le x\le9\)).
\(\Rightarrow\)Chữ số hàng đơn vị của số cần tìm là \(9-x\).
\(\Rightarrow\)Số cần tìm là: \(\overline{\left(9-x\right)x}=10\left(9-x\right)+x=90-9x\).
Khi đảo 2 chữ số của số cần tìm, ta được số mới là: \(\overline{x\left(9-x\right)}=10x+9-x=9+9x\).
Vì khi thêm vào chữ số cần tìm \(63\) đơn vị thì ta thu được số mới cũng viết bằng hai chữ số đo nhưng theo thứ tự ngươc lại, nên ta có phương trình:
\(\left(90-9x\right)+63=9+9x\).
\(\Leftrightarrow144=18x\).
\(\Leftrightarrow x=8\)(thỏa mãn).
\(\Rightarrow\)Chữ số hàng chục của chữ số cần tìm là: \(9-8=1\).
\(\Rightarrow\)Chữ số cần tìm là \(18\).
Vậy chữ số cần tìm là: \(18\)
Gọi số cần tìm là xy
Gt: yx -xy =63
=> 10y +x -(10x +y) =63
<=> 9y -9x =63
<=> y -x =7
Gt: x +y =9
=> y =8; x =1
Vậy số cần tìm là 18.
Đây là KQ của mk k biết coó đúng k
Gọi số cần tìm là \(\overline{ab}\)
Theo đề bài, ta có:
\(\overline{ab}+63=\overline{ba}\)và \(a+b=9\)
Từ đó, ta có HPT:
\(\hept{\begin{cases}a+b=9\\10a+b+63=10b+a\end{cases}\Rightarrow\hept{\begin{cases}a+b=9\\9a+63=9b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=9\\a+7=b\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=8\end{cases}}}\)
Vậy số cần tìm là 18
Cho một số có hai chữ số, biết rằng tổng các chữ số của nó bằng 7 và khi đảo thứ tự hai chữ số của nó thì được số mới hơn số ban đầu 27 đơn vị. Khi đó chữ số hàng chục là bao nhiêu
Bài 2:
Số thư nhất là (80+14)/2=47
Số thứ hai là 47-14=33
Bài 3:
Gọi số thứ nhât là x
=>Số thứ hai là 7-x
Theo đề, ta co hệ: \(\dfrac{1}{x}+\dfrac{1}{7-x}=\dfrac{7}{12}\)
=>\(\dfrac{7-x+x}{x\left(7-x\right)}=\dfrac{7}{12}\)
=>x(7-x)=12
=>x(x-7)=-12
=>x^2-7x+12=0
=>x=3 hoặc x=4
=>Hai số cần tìm là 3;4
Bài 2 :
Gọi \(x,y\) là 2 số đó
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=80\\x-y=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=47\\y=33\end{matrix}\right.\)
Vậy 2 số đó là 47 và 33
Bài 3 :
Gọi \(x,y\) là 2 số cần tìm
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=7\\x-y=\dfrac{7}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{91}{24}\\y=\dfrac{77}{24}\end{matrix}\right.\)
Vậy 2 số đó là \(\dfrac{91}{24};\dfrac{77}{24}\)
Gọi chữ số hàng chục là x (0<x<9)
Gọi chữ số hàng đơn vị là y(0<y<9)
Vì tổng các chữ số bằng 6 ta có :
\(x+y=6\) (1)
Nếu thêm vào số đó 18 đơn vị thì được một số cũng viết bằng các chữ số đó nhưng theo thứ tự ngược lại nên ta có pt:
\(\left(10x+y\right)+18=10y+x\)
\(\Leftrightarrow\) \(9x-9y=-18\)
\(\Leftrightarrow\) \(x-y=-2\) (2)
Từ (1) và (2) ta có hệ :
\(\hept{\begin{cases}x+y=6\\x-y=2\end{cases}}\)
giải ra ta được :\(\hept{\begin{cases}x=2\\y=4\end{cases}}\) (tm)
Vậy số tự nhiên có 2 chữ số đó là 24
Gọi số đó có dạng \(\overline{xy}=10x+y\) với x;y là các số tự nhiên từ 1 tới 9
Do số đó gấp 4 lần tổng các chữ số của nó nên ta có:
\(10x+y=4\left(x+y\right)\Rightarrow2x-y=0\)
Khi viết ngược số đó ta được số mới có giá trị là: \(10y+x\)
Do số mới lớn hơn số ban đầu 36 đơn vị nên:
\(10y+x-\left(10x+y\right)=36\Rightarrow y-x=4\)
Ta được hệ: \(\left\{{}\begin{matrix}2x-y=0\\y-x=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=8\end{matrix}\right.\)
Vậy số đó là 48
- Gọi hai chữ số càn tìm là : \(\overline{xy}\left(x,y\in N,0\le x,y< 10\right)\)
Ta có : Số đó gấp 4 lần tổng các chữ số của nó .
=> 10x + y = 4 ( x + y )
=> 10x + y - 4x - 4y = 6x - 3y = 0 ( I )
Lại có : Nếu viết hai chữ số của nó theo thứ tự ngược lại thì đc số mới lớn hơn số ban đầu 36 đơn vị .
=> \(\overline{xy}+36=\overline{yx}\)
=> 10x + y + 36 = 10y + x
=> 9y - 9x = 36 ( II )
- Kết hợp ( I ) và ( II ) ta được hệ phương tình : Giai ( I ) và ( II ) ta được :
\(\left\{{}\begin{matrix}x=4\\y=8\end{matrix}\right.\)
Vậy chữ số cần tìm là 48 .
làm sao để viết có dấu gạch ngang trên đầu vậy bạn?
Câu 2:
Gọi số phải tìm là ab
Vì tổng các chữ số của số cần tìm là 9 nên a+b=9(1)
Vì khi thêm vào số đó 63 đơn vị thì số thu được cũng viết bằng hai chữ số đó nhưng theo thứ tự ngược lại nên \(10a+b+63=10b+a\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=9\\10a+b+63=10b+a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\10a+b+63-10b-a=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\9a-9b=-63\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\a-b=-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\9-b-b=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\-2b=-16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9-8=1\\b=8\end{matrix}\right.\)
Vậy: Số cần tìm là 18