Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
Gọi số phải tìm là ab
Vì tổng các chữ số của số cần tìm là 9 nên a+b=9(1)
Vì khi thêm vào số đó 63 đơn vị thì số thu được cũng viết bằng hai chữ số đó nhưng theo thứ tự ngược lại nên \(10a+b+63=10b+a\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=9\\10a+b+63=10b+a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\10a+b+63-10b-a=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\9a-9b=-63\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\a-b=-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\9-b-b=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\-2b=-16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9-8=1\\b=8\end{matrix}\right.\)
Vậy: Số cần tìm là 18
Gọi tử là: x
mẫu là: y\(\left(y\ne0\right)\)
\(\Rightarrow x+y=32\left(1\right)\)
Vì khi tăng mẫu thêm 10 đơn vị và giảm tử đi 1 nửa thì được phân số mới bằng \(\frac{2}{17}\)
\(\Rightarrow\frac{x.0,5}{y+10}=\frac{2}{17}\Leftrightarrow8,5x-2y=20\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\hept{\begin{cases}x+y=32\\8,5x-2y=20\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=24\end{cases}}}\)
\(\Rightarrow\)Phân số cằn tìm là: \(\frac{8}{24}=\frac{1}{3}\)
gọi tử số của phân số cần tìm là a
mẫu số của phân số cần tìm là a+5
nêu thêm tử 17 đơn zị , mẫu 2 đơn zị thì ta có
\(\frac{a+17}{a+7}\)
theo đề bài t có phương trình
\(\frac{a+17}{a+7}=\frac{a+5}{a}\)\(\Leftrightarrow\)\(a\left(a+17\right)=\left(a+5\right)\left(a+7\right)\Leftrightarrow a^2+17a=a^2+7a+5a+35\)
=>\(5a=35=>a=7\)
phâ số cần tìm là \(\frac{7}{12}\)
Gọi phân số đó là \(\dfrac{a}{b}\), theo bài ra ta có hệ pt:
\(\left\{{}\begin{matrix}\dfrac{a}{b+1}=\dfrac{1}{3}\\\dfrac{a+2}{b+2}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a-b=1\\2a-b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=8\end{matrix}\right.\)
Vậy phân số đó là \(\dfrac{3}{8}\)
Gọi 2 số cần tìm là a và b ( \(a,b\inℕ^∗\))
Theo bài, ta có: \(\frac{a}{b}=\frac{4}{7}\)\(\Rightarrow\frac{a}{4}=\frac{b}{7}\)
Đặt \(\frac{a}{4}=\frac{b}{7}=k\left(k\inℕ^∗\right)\)\(\Rightarrow a=4k\); \(b=7k\)
Nếu lấy số thứ nhất chia cho 4, số thứ 2 chia cho 5 thì thương thứ nhất bé hơn thương thứ hai 2 đơn vị
\(\Rightarrow\)Ta có phương trình : \(\frac{7k}{5}-\frac{4k}{4}=2\)
\(\Leftrightarrow\frac{7k}{5}-k=2\)\(\Leftrightarrow\frac{7k}{5}-\frac{5k}{5}=\frac{10}{2}\)
\(\Leftrightarrow7k-5k=10\)\(\Leftrightarrow2k=10\)\(\Leftrightarrow k=5\)( thoả mãn ĐK )
\(\Rightarrow a=5.4=20\)và \(b=5.7=35\)
Vậy số bé là 20 và số lớn là 35
Gọi số cần tìm là \(\overline{ab}\left(a\inℕ^∗,a\le9;b\inℕ,b\le9\right)\)
Vì tổng hai chữ số bằng 8 nên ta có phương trình \(a+b=8\Leftrightarrow b=8-a\)(1)
Lại có \(\overline{ab}=10a+b\)
Khi viết chữ số 1 xen giữa 2 chữ số, ta được số mới là \(\overline{a1b}=100a+10+b\)
Số mới hơn số cũ 190 đơn vị nên ta có phương trình \(100a+10+b-\left(10a+b\right)=190\)
\(\Leftrightarrow90a=180\)\(\Leftrightarrow a=2\)(nhận)
Thay vào (1), ta có \(b=8-2=6\)(nhận)
Vậy số cần tìm là 26
a)Gọi 2 số cần tìm là a và b lần lượt là số t1 và t2 , ta có hpt :
5a+4b=18040
3a-2b=2002
giải hpt ta được a=2004;b=2005
b) Gọi số tự nhiên cần tim là ab (nhớ gạch ở trên ab đó) ;(a;b thuộc N;0<a"<9;0<b'<9)
theo đề bài ta có :
ab=4(a+b)
ba-ab=36
=>a=4;b=8 hay ab=48
nhớ các chữ ab hay ba có gạch ở trên đầu đó
Câu 1: Một số của 1 phân số? Là ý gì thế?
ok phải rồi