\(\dfrac{7}{4}\) chiều rộng và có diệ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2021

Câu 1:

Gọi chiều rộng khu vườn là \(x\) (m) \(\left(x>0\right)\)

\(\Rightarrow\) Chiều dài khu vườn là \(\dfrac{7}{4}x\) (m).

Diện tích khu vườn là 1792 m2 \(\Rightarrow\dfrac{7}{4}x^2=1792\)

\(\Rightarrow x^2=1024\Rightarrow x=32\) (m)

\(\Rightarrow\) Chiều rộng khu vườn là \(32\)m, chiều dài khu vườn là \(\dfrac{7}{4}.32=56\)m

\(\Rightarrow\) Chu vi khu vườn là: \(2.\left(32+56\right)=176\) (m).

(Bạn có thể gọi chiều dài là x, chiều rộng là y nhé.)

Câu 2:

Bạn kiểm tra lại đề bài nhé. Thiếu dữ kiện để có thể lập được hệ phương trình ạ.

Câu 2: 

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh vườn(Điều kiện: a>0; b>0 và \(a\ge b\))

Vì diện tích ban đầu của mảnh vườn là 720m2 nên ta có phương trình: 

ab=720(1)

Vì khi tăng chiều dài 6m và giảm chiều rộng 4m thì diện tích mảnh vườn không đổi nên ta có phương trình:

\(\left(a+6\right)\left(b-4\right)=720\)

\(\Leftrightarrow ab-4a+6b-24=720\)

\(\Leftrightarrow-4a+6b-24=0\)

\(\Leftrightarrow-4a+6b=24\)(2)

Từ (1) và (2) ta có được hệ phương trình:

\(\left\{{}\begin{matrix}ab=720\\-4a+6b=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\-4\cdot\dfrac{720}{b}+6b=24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\-\dfrac{2880}{b}+6b=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\6b^2-24b-2880=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\6\left(b^2-4b-480\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\b^2-4b+4-484=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-2\right)^2-484=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-2-22\right)\left(b-2+22\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-24\right)\left(b+20\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left[{}\begin{matrix}b-24=0\\b+20=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left[{}\begin{matrix}b=24\left(nhận\right)\\b=-20\left(loại\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{24}=30\left(nhận\right)\\b=24\end{matrix}\right.\)

Vậy: Chiều dài của mảnh vườn là 30m; Chiều rộng của mảnh vườn là 24m

22 tháng 9

Gọi:

  • \(x\) là chiều dài ban đầu (m)
  • \(y\) là chiều rộng ban đầu (m)

Theo đề bài:

  1. Chu vi hình chữ nhật là 64m, tức:

\(2 \left(\right. x + y \left.\right) = 64 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x + y = 32\)

  1. Khi tăng chiều dài thêm 2m và chiều rộng thêm 3m, diện tích tăng thêm 88 m². Diện tích ban đầu là \(x y\), diện tích sau tăng là \(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right)\). Do đó:

\(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right) - x y = 88\)

Mở rộng và đơn giản:

\(x y + 3 x + 2 y + 6 - x y = 88\)\(3 x + 2 y + 6 = 88\)\(3 x + 2 y = 82\)


Hệ phương trình:

\(\left{\right. x + y = 32 \\ 3 x + 2 y = 82\)


Giải hệ:

Từ phương trình thứ nhất:

\(y = 32 - x\)

Thay vào phương trình thứ hai:

\(3 x + 2 \left(\right. 32 - x \left.\right) = 82\)\(3 x + 64 - 2 x = 82\)\(x + 64 = 82\)\(x = 18\)

Thay \(x = 18\) vào:

\(y = 32 - 18 = 14\)


Kết luận:

Chiều dài mảnh vườn là \(\boxed{18 \&\text{nbsp};\text{m}}\), chiều rộng là \(\boxed{14 \&\text{nbsp};\text{m}}\).
Tk

Nửa chu vi mảnh vườn là 64:2=32(m)

Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là x(m) và y(m)

(Điều kiện: x>y>0)

Nửa chu vi mảnh vườn là 32m nên x+y=32(1)

Nếu tăng chiều dài thêm 2m và tăng chiều rộng thêm 3m thì diện tích tăng thêm \(88m^2\)

nên ta có: (x+2)(y+3)=xy+88

=>xy+3x+2y+6=xy+88

=>3x+2y=82(2)

Từ (1),(2) ta có hệ phương trình:

\(\begin{cases}x+y=32\\ 3x+2y=82\end{cases}\Rightarrow\begin{cases}3x+3y=96\\ 3x+2y=82\end{cases}\)

=>\(\begin{cases}3x+3y-3x-2y=96-82\\ x+y=32\end{cases}\Rightarrow\begin{cases}y=14\\ x=32-14=18\end{cases}\) (nhận)

Vậy: chiều dài và chiều rộng của mảnh vườn lần lượt là 18(m) và 14(m)

26 tháng 1 2021

Gọi chiều dài mảnh vườn là x ( x > 0 )

=> Chiều rộng mảnh vườn = 720/x ( m )

Tăng chiều dài 6m và giảm chiều rộng 4m

=> Chiều dài mới = ( x + 6 )m và chiều rộng mới = ( 720/x - 4 )m

Khi đó diện tích mảnh vườn không đổi

=> Ta có phương trình : \(x\cdot\frac{720}{x}=\left(x+6\right)\left(\frac{720}{x}-4\right)\)( bạn tự giải nhé )

Giải phương trình thu được 2 nghiệm x1 = -36 ( loại ) và x2 = 30 ( nhận )

=> Chiều dài mảnh vườn = 30m

Chiều rộng mảnh vườn = 720/30 = 24m

2:

Gọi chiều dài, chiều rộng lần lượt là a,b

Theo đề, ta có:

a+b=50 và (a-4)(b+3)=ab-2

=>a+b=50 và 3a-4b=10

=>a=30 và b=20

S=30*20=600m2

Gọi chiều dài hình chữ nhật là x thì chiều rộng là \(\frac{720}{x}\left(x>0\right)\left(m\right)\)
\(\Leftrightarrow720-6x+\frac{7200}{x}-60=720\)
\(\Leftrightarrow6x^2-7200+60x=0\)
\(\Leftrightarrow x^2+10x-1200=0\)
\(\Leftrightarrow x^2+40x-30x-1200=0\)
\(\Leftrightarrow x\left(x+40\right)-30\left(x+40\right)=0\)
\(\Leftrightarrow\left(x+40\right)\left(x-30\right)=0\)
\(\Leftrightarrow x=30\)vì \(x>0\)
Vậy chiều dài là\(30m\), chiều rộng là \(\frac{720}{30}=24m\)

8 tháng 5 2021

Chiều rộng là 24m

 

Chiều dài mảnh vườn là 30m

Gọi chiều rộng, chiều dài lần lượt là a,b

Theo đề ta có:

\(\left\{{}\begin{matrix}a+b=\dfrac{64}{2}=32\\\left(a-2\right)\left(b+4\right)=ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=32\\ab+4a-2b-8=ab\end{matrix}\right.\)

=>a+b=32 và 4a-2b=8

=>a=12; b=20

Gọi chiều dài HCN là x (x>0,m)

Ta có chiều rộng HCN là \(\frac{720}{x}\left(m\right)\)

Theo bài ra ta có phương trình sau 

\(\left(x+1\right)\left(\frac{720}{x}-6\right)=720\Leftrightarrow6x^2+60x-7200=0\Leftrightarrow x^2+10x-1200=0\)

\(\Delta=10^2-4.1.\left(-1200\right)=100+4800=4900>0\)

Tự thực hiện tiếp ....