Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi:
- \(x\) là chiều dài ban đầu (m)
- \(y\) là chiều rộng ban đầu (m)
Theo đề bài:
- Chu vi hình chữ nhật là 64m, tức:
\(2 \left(\right. x + y \left.\right) = 64 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x + y = 32\)
- Khi tăng chiều dài thêm 2m và chiều rộng thêm 3m, diện tích tăng thêm 88 m². Diện tích ban đầu là \(x y\), diện tích sau tăng là \(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right)\). Do đó:
\(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right) - x y = 88\)
Mở rộng và đơn giản:
\(x y + 3 x + 2 y + 6 - x y = 88\)\(3 x + 2 y + 6 = 88\)\(3 x + 2 y = 82\)
Hệ phương trình:
\(\left{\right. x + y = 32 \\ 3 x + 2 y = 82\)
Giải hệ:
Từ phương trình thứ nhất:
\(y = 32 - x\)
Thay vào phương trình thứ hai:
\(3 x + 2 \left(\right. 32 - x \left.\right) = 82\)\(3 x + 64 - 2 x = 82\)\(x + 64 = 82\)\(x = 18\)
Thay \(x = 18\) vào:
\(y = 32 - 18 = 14\)
Kết luận:
Chiều dài mảnh vườn là \(\boxed{18 \&\text{nbsp};\text{m}}\), chiều rộng là \(\boxed{14 \&\text{nbsp};\text{m}}\).
Tk
Nửa chu vi mảnh vườn là 64:2=32(m)
Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là x(m) và y(m)
(Điều kiện: x>y>0)
Nửa chu vi mảnh vườn là 32m nên x+y=32(1)
Nếu tăng chiều dài thêm 2m và tăng chiều rộng thêm 3m thì diện tích tăng thêm \(88m^2\)
nên ta có: (x+2)(y+3)=xy+88
=>xy+3x+2y+6=xy+88
=>3x+2y=82(2)
Từ (1),(2) ta có hệ phương trình:
\(\begin{cases}x+y=32\\ 3x+2y=82\end{cases}\Rightarrow\begin{cases}3x+3y=96\\ 3x+2y=82\end{cases}\)
=>\(\begin{cases}3x+3y-3x-2y=96-82\\ x+y=32\end{cases}\Rightarrow\begin{cases}y=14\\ x=32-14=18\end{cases}\) (nhận)
Vậy: chiều dài và chiều rộng của mảnh vườn lần lượt là 18(m) và 14(m)

Gọi chiều dài mảnh vườn là x ( x > 0 )
=> Chiều rộng mảnh vườn = 720/x ( m )
Tăng chiều dài 6m và giảm chiều rộng 4m
=> Chiều dài mới = ( x + 6 )m và chiều rộng mới = ( 720/x - 4 )m
Khi đó diện tích mảnh vườn không đổi
=> Ta có phương trình : \(x\cdot\frac{720}{x}=\left(x+6\right)\left(\frac{720}{x}-4\right)\)( bạn tự giải nhé )
Giải phương trình thu được 2 nghiệm x1 = -36 ( loại ) và x2 = 30 ( nhận )
=> Chiều dài mảnh vườn = 30m
Chiều rộng mảnh vườn = 720/30 = 24m

2:
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có:
a+b=50 và (a-4)(b+3)=ab-2
=>a+b=50 và 3a-4b=10
=>a=30 và b=20
S=30*20=600m2

Gọi chiều dài hình chữ nhật là x thì chiều rộng là \(\frac{720}{x}\left(x>0\right)\left(m\right)\)
\(\Leftrightarrow720-6x+\frac{7200}{x}-60=720\)
\(\Leftrightarrow6x^2-7200+60x=0\)
\(\Leftrightarrow x^2+10x-1200=0\)
\(\Leftrightarrow x^2+40x-30x-1200=0\)
\(\Leftrightarrow x\left(x+40\right)-30\left(x+40\right)=0\)
\(\Leftrightarrow\left(x+40\right)\left(x-30\right)=0\)
\(\Leftrightarrow x=30\)vì \(x>0\)
Vậy chiều dài là\(30m\), chiều rộng là \(\frac{720}{30}=24m\)

Gọi chiều rộng, chiều dài lần lượt là a,b
Theo đề ta có:
\(\left\{{}\begin{matrix}a+b=\dfrac{64}{2}=32\\\left(a-2\right)\left(b+4\right)=ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=32\\ab+4a-2b-8=ab\end{matrix}\right.\)
=>a+b=32 và 4a-2b=8
=>a=12; b=20

Gọi chiều dài HCN là x (x>0,m)
Ta có chiều rộng HCN là \(\frac{720}{x}\left(m\right)\)
Theo bài ra ta có phương trình sau
\(\left(x+1\right)\left(\frac{720}{x}-6\right)=720\Leftrightarrow6x^2+60x-7200=0\Leftrightarrow x^2+10x-1200=0\)
\(\Delta=10^2-4.1.\left(-1200\right)=100+4800=4900>0\)
Tự thực hiện tiếp ....
Câu 1:
Gọi chiều rộng khu vườn là \(x\) (m) \(\left(x>0\right)\)
\(\Rightarrow\) Chiều dài khu vườn là \(\dfrac{7}{4}x\) (m).
Diện tích khu vườn là 1792 m2 \(\Rightarrow\dfrac{7}{4}x^2=1792\)
\(\Rightarrow x^2=1024\Rightarrow x=32\) (m)
\(\Rightarrow\) Chiều rộng khu vườn là \(32\)m, chiều dài khu vườn là \(\dfrac{7}{4}.32=56\)m
\(\Rightarrow\) Chu vi khu vườn là: \(2.\left(32+56\right)=176\) (m).
(Bạn có thể gọi chiều dài là x, chiều rộng là y nhé.)
Câu 2:
Bạn kiểm tra lại đề bài nhé. Thiếu dữ kiện để có thể lập được hệ phương trình ạ.
Câu 2:
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh vườn(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì diện tích ban đầu của mảnh vườn là 720m2 nên ta có phương trình:
ab=720(1)
Vì khi tăng chiều dài 6m và giảm chiều rộng 4m thì diện tích mảnh vườn không đổi nên ta có phương trình:
\(\left(a+6\right)\left(b-4\right)=720\)
\(\Leftrightarrow ab-4a+6b-24=720\)
\(\Leftrightarrow-4a+6b-24=0\)
\(\Leftrightarrow-4a+6b=24\)(2)
Từ (1) và (2) ta có được hệ phương trình:
\(\left\{{}\begin{matrix}ab=720\\-4a+6b=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\-4\cdot\dfrac{720}{b}+6b=24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\-\dfrac{2880}{b}+6b=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\6b^2-24b-2880=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\6\left(b^2-4b-480\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\b^2-4b+4-484=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-2\right)^2-484=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-2-22\right)\left(b-2+22\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left(b-24\right)\left(b+20\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left[{}\begin{matrix}b-24=0\\b+20=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{b}\\\left[{}\begin{matrix}b=24\left(nhận\right)\\b=-20\left(loại\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{720}{24}=30\left(nhận\right)\\b=24\end{matrix}\right.\)
Vậy: Chiều dài của mảnh vườn là 30m; Chiều rộng của mảnh vườn là 24m