Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(HPT\Leftrightarrow\hept{\begin{cases}5x-y=4\left(1\right)\\3x-y=5\left(2\right)\end{cases}}\)
Lấy (1) trừ (2) :
\(\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)
Thay \(x=-\frac{1}{2}\) vào (1) : \(y=5x-4=5.-\frac{1}{2}-4=-\frac{13}{2}\)
Vậy HPT có nghiệm \(\left(x,y\right)=\left(-\frac{1}{2},-\frac{13}{2}\right)\)
b ) \(\hept{\begin{cases}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-2y=\sqrt{2}\left(1\right)\\\sqrt{6}x+3y=3\left(2\right)\end{cases}}}\)
Lấy (2 ) -(1) thu được :
\(5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}\)
Thay giá trị y trên vào (1) : \(x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}\)
Vậy ......
\(\frac{1}{\sqrt{2}+\sqrt[3]{4}}=\frac{\sqrt{2}-\sqrt[3]{4}}{\left(\sqrt{2}+\sqrt[3]{4}\right)\left(\sqrt{2}-\sqrt[3]{4}\right)}=\frac{\sqrt{2}-\sqrt[3]{4}}{2-\sqrt[3]{16}}=\frac{\sqrt{2}-\sqrt[3]{4}}{2\left(1-\sqrt[3]{2}\right)}=\frac{1}{2}.\frac{\left(\sqrt[3]{4}-\sqrt{2}\right)\left(\sqrt[3]{4}+\sqrt[3]{2}+1\right)}{\left(\sqrt[2]{2}-1\right)\left(\sqrt[3]{4}+\sqrt[3]{2}+1\right)}=\frac{TS}{2\left(2-1\right)}=\frac{TS}{2}\)