Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Theo đề bài thì số cần tìm có dạng abba.
Tổng của hai chữ số a và b là:
18 : 2 = 9
Số 9 có thể phân tích thành tổng của những cặp số sau: 0 và 9; 1 và 8; 2 và 7; 3 và 6; 4 và 5.
Số cần tìm có thể là: 9009; 1881; 8118; 7227; 2772; 6336; 3663; 4554; 5445.
Ta có bảng sau:
abba | a*b*b*a | Kết Luận |
9009 | 9*0*0*9 = 0 | Loại |
1881 | 1*8*8*1 = 64 | Chọn |
8118 | 8*1*1*8 = 64 | Chọn |
7227 | 7*2*2*7 = 196 | Loại |
2772 | 2*7*7*2 = 196 | Loại |
6336 | 6*3*3*6 = 324 | Loại |
3663 | 3*6*6*3 = 324 | Loại |
4554 | 4*5*5*4 = 400 | Loại |
5445 | 5*4*4*5 = 400 | Loại |
Vậy số cần tìm là 1881 hoặc 8118.
Giải:
Theo đề bài thì số cần tìm có dạng abba.
Tổng của hai chữ số a và b là:
18 : 2 = 9
Số 9 có thể phân tích thành tổng của những cặp số sau: 0 và 9; 1 và 8; 2 và 7; 3 và 6; 4 và 5.
Số cần tìm có thể là: 9009; 1881; 8118; 7227; 2772; 6336; 3663; 4554; 5445.
Ta có bảng sau:
abba | a*b*b*a | Kết Luận |
9009 | 9*0*0*9 = 0 | Loại |
1881 | 1*8*8*1 = 64 | Chọn |
8118 | 8*1*1*8 = 64 | Chọn |
7227 | 7*2*2*7 = 196 | Loại |
2772 | 2*7*7*2 = 196 | Loại |
6336 | 6*3*3*6 = 324 | Loại |
3663 | 3*6*6*3 = 324 | Loại |
4554 | 4*5*5*4 = 400 | Loại |
5445 | 5*4*4*5 = 400 | Loại |
Vậy số cần tìm là 1881 hoặc 8118.
Giải: Theo đề bài thì số cần tìm có dạng abba.Tổng của hai chữ số a và b là: 18 : 2 = 9 Số 9 có thể phân tích thành tổng của những cặp số sau: 0 và 9; 1 và 8; 2 và 7; 3 và 6; 4 và 5. Số cần tìm có thể là: 9009; 1881; 8118; 7227; 2772; 6336; 3663; 4554; 5445. Ta có bảng sau:
Vậy số cần tìm là 1881 hoặc 8118. |
Bài 5:
Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825
=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683
=> abc chia 1987 dư 304. Mà abc nhỏ nhất
=> abc = 304
Vậy số tự nhiên là 11111304
gọi số đó là abc
theo đề bài ta có
abc = bc * 7
100 * a + bc = 7* bc
100 a = 6 * bc
50a= 3 bc
vậy a= 3 bc = 50
vậy số phải tìm là 350
Gọi abc là số tự nhiên phải tìm.
Theo đầu bài ta có:
abc = bc x 7
Tức là:
100 x a +bc = 7 x bc
100 x a = 6 x bc
50 x a = 3 x bc
50 x a = bc x 3
Suy ra :
a= 3 ; bc =50
vậy số phải tìm là 350
Gọi số đó là abcd (có gạch trên đầu)
Ta có:
dcba = 4.abcd
=> dcba chia hết cho 4 => a là chữ số chẵn
Ta thấy a đương nhiên khác 0; và nếu a ≥ 4 thì 4.abcd ≥ 4.4000 > 9999 ≥ dcba
Do vậy a = 2
=> dcba = 4.abcd ≥ 4.2000 = 8000 => d=8 hoặc d=9
Tuy nhiên do dcba = 4.abcd nên 4.d phải tận cùng bằng chữ số a.
Ta thấy: 4.8 = 32 ; 4.9 = 36
Vậy d = 8
Ta lại có: dcba = 100.dc +ba = 4.25.dc +ba chia hết cho 4
nên ba chia hết cho 4
Do a =2 nên b chỉ có thể = 1;3;5;7;9
Tuy nhiên nếu b ≥ 3 thì
8cba = 4.2bcd ≥ 4.2300 = 9200 (vô lý)
Vậy b = 1
Bây giờ ta có: 8c12 = 4.21c8
<=> 8012 +100.c = 4.2108 +4.10.c
<=> 60.c = 420
<=> c = 7
Vậy số cần tìm là: 2178
Gọi số đó là abcd ( coi như có dấu gạch trên đầu; nếu là phép nhân mình sẽ ghi dấu .)
Ta có:
dcba = 4.abcd
=> dcba chia hết cho 4 => a là chữ số chẵn
Ta thấy a đương nhiên khác 0; và nếu a ≥ 4 thì 4.abcd ≥ 4.4000 > 9999 ≥ dcba
Do vậy a = 2
=> dcba = 4.abcd ≥ 4.2000 = 8000 => d=8 hoặc d=9
Tuy nhiên do dcba = 4.abcd nên 4.d phải tận cùng bằng chữ số a.
Ta thấy: 4.8 = 32 ; 4.9 = 36
Vậy d = 8
Ta lại có: dcba = 100.dc +ba = 4.25.dc +ba chia hết cho 4
nên ba chia hết cho 4
Do a =2 nên b chỉ có thể = 1;3;5;7;9
Tuy nhiên nếu b ≥ 3 thì
8cba = 4.2bcd ≥ 4.2300 = 9200 (vô lý)
Vậy b = 1
Bây giờ ta có: 8c12 = 4.21c8
<=> 8012 +100.c = 4.2108 +4.10.c
<=> 60.c = 420
<=> c = 7
Vậy số cần tìm là: 2178
Gọi số cần tìm là abba ( đk e tự viết vô nha)
ta có 2a+2b=20
<=> a+b=10
lại có a.b= 21
tổng tích ra dc kq nha