K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2:

a: =>x-4>=0

=>x>=4

b: =>x+1>0

=>x>-1

4 tháng 5 2022

giải thì giải hết ik còn tự giải

 

30 tháng 4 2023

Một học sinh đi từ nhà đến trường với vận tốc 15 km/h,rồi từ trường quay về nhà với vận tốc 20 kM/H.biết Thời Gian Đi Nhiều Hơn Thời Gian Về Là 15phút.Tinh Quảng Đường Từ Nhà Đến Trường Của Người Đó?

 

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng vớiΔABD

b: ΔABD vuông tại A có AH là đường cao

nên AD^2=DH*DB

c: AH=6*8/10=4,8cm

HD=6^2/10=3,6cm

Gọi độ dài quãng đường là x

Theo đề, ta có: \(\dfrac{x}{12}-\dfrac{x}{15}=\dfrac{1}{6}\)

hay x=10

20 tháng 2 2022

Tham khảo: 

Gọi độ dài quãng đường từ nhà đến trường là x(km)(Điều kiện: x>0)

Thời gian học sinh đi từ nhà đến trường:x15(h)

Thời gian học sinh đi từ trường về nhà:x12(h)

Theo đề, ta có phương trình: x12−x15=16

⇔5x60−4x60=1060

⇔5x−4x=10

hay x=10(thỏa ĐK)

Vậy: Độ dài quãng đường từ nhà đến trường là 10km

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng vơí ΔABD

b: ΔHAD đồng dạng với ΔABD

=>AD/BD=HD/AD

=>AD^2=DH*DB

c: BD=căn 8^2+6^2=10cm

AH=6*8/10=4,8cm

DH=AD^2/BD=6^2/10=3,6cm

d: ΔHAD đồng dạng với ΔABD

=>S HAD/S ABD=(AD/BD)^2=9/25 và k=AD/BD=3/5

26 tháng 8 2018

Bài 1: 

a, 10 - 4x = 2x - 3

<=> - 4x - 2x = -3 -10

<=> -6x = -13

<=> x =13/6

26 tháng 8 2018

miyano shiho bạn giúp mình nốt mấy bài cuối nha :v

Câu 1: (3,0 điểm). Giải các phương trình:a) \(3x+5=2x+2\).b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\).c) \(\left|x-3\right|+1=2x-7\).Câu 2: (2,0 điểm). a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số: \(5x-15x+15\).b) Giải bất phương trình \(\frac{8-4x}{3}\frac{12-x}{5}\). Từ đó tìm số nguyên x lớn nhất thỏa mãn bất phương trình trên.Câu 3: (1,0 điểm). Một người đi xe máy...
Đọc tiếp

Câu 1: (3,0 điểm). Giải các phương trình:

a) \(3x+5=2x+2\).

b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\).

c) \(\left|x-3\right|+1=2x-7\).

Câu 2: (2,0 điểm). 

a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số: \(5x-15>x+15\).

b) Giải bất phương trình \(\frac{8-4x}{3}>\frac{12-x}{5}\). Từ đó tìm số nguyên x lớn nhất thỏa mãn bất phương trình trên.

Câu 3: (1,0 điểm). Một người đi xe máy từ A đến B với vận tốc 60 km/h, rồi quay trở về A với vận tốc 50 km/h. Biết rằng thời gian đi từ A đến B ít hơn thời gian lúc về là 48 phut. Tính quãng đường từ A đến B.

Câu 4: (3,0 điểm). Cho \(\Delta ABC\)nhọn, các đường cao AD, BE, CF cắt nhau tại H.

a) Chứng minh rằng \(\Delta AEB~\Delta AFC\). Từ đó suy ra: \(AF.AB=AE.AC\).

b) Chứng minh: \(HE.HB=HF.HC\)\(\widehat{BEF}=\widehat{BCF}\).

c) Chứng minh: \(\frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA}=1\).

Câu 5: (1,0 điểm).

a) Chứng minh: Với mọi a, b ta có: \(a^2+b^2+1\ge ab+a+b\).

b) Giải phương trình: \(\left(3x+4\right)\left(x+1\right)\left(6x+7\right)^2=6\).

 

5
8 tháng 5 2021

Câu 1: (3,0 điểm). Giải các phương trình:

a) \(3x+5=2x+2\).

\(\Leftrightarrow3x-2x=2-5\).

\(\Leftrightarrow x=-3\).

Vậy phương trình có tập nghiệm: \(S=\left\{-3\right\}\).

b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\left(ĐKXĐ:x\ne-1;x\ne2\right)\).

\(\Leftrightarrow\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\).

\(\Rightarrow x-5=4x-8+3x+3\).

\(\Leftrightarrow x-4x-3x=-8+3+5\).

\(\Leftrightarrow-6x=0\).

\(\Leftrightarrow x=0\)(thỏa mãn ĐKXĐ).

Vậy phương trình có tập nghiệm: \(S=\left\{0\right\}\).

8 tháng 5 2021

c) \(\left|x-3\right|+1=2x-7\)

- Xét \(x-3\ge0\Leftrightarrow x\ge3\). Do đó \(\left|x-3\right|=x-3\). Phương trình trở thành:

\(x-3+1=2x-7\).

\(\Leftrightarrow x-2=2x-7\).

\(\Leftrightarrow x-2x=-7+2\).

\(\Leftrightarrow-x=-5\).

\(\Leftrightarrow x=5\)(thỏa mãn).

- Xét \(x-3< 0\Leftrightarrow x< 3\)Do đó \(\left|x-3\right|=3-x\). Phương trình trở thành:

\(3-x+1=2x-7\).

\(\Leftrightarrow4-x=2x-7\).

\(-x-2x=-7-4\).

\(\Leftrightarrow-3x=-11\).

\(\Leftrightarrow x=\frac{-11}{-3}=\frac{11}{3}\)(loại).

Vậy phương trình có tập nghiệm: \(S=\left\{5\right\}\).

Câu 2: (2,0 điểm). 

a) \(5x-5>x+15\).

\(\Leftrightarrow5x-x>15+5\).

\(\Leftrightarrow4x>20\).

\(\Leftrightarrow x>5\).

Vậy bất phương trình có tập nghiệm: \(\left\{x|x>5\right\}\).

b) \(\frac{8-4x}{3}>\frac{12-x}{5}\).

\(\Leftrightarrow\frac{5\left(8-4x\right)}{15}>\frac{3\left(12-x\right)}{15}\).

\(\Leftrightarrow40-20x>36-3x\).

\(\Leftrightarrow-20x+3x>36-40\).

\(\Leftrightarrow-17x>-4\).

\(\Leftrightarrow x< \frac{4}{17}\)\(\Leftrightarrow x< 0\frac{4}{17}\).

\(\Rightarrow\)Số nguyên x lớn nhất thỏa mãn bất phương trình trên là: \(x=0\).

Vậy \(x=0\).

11 tháng 3 2021

a) $5'=\dfrac{1}{12}h$ 

Gọi $x(km)$ là độ dài quãng đường từ nhà Minh đến trường $(x>0)$

Thời gian Minh đi là: $\dfrac{x}{24}(h)$

Thời gian Minh về là: $\dfrac{x}{30}(h)$

Theo đề bài, ta có pt: $\dfrac{x}{24}-\dfrac{x}{30}=\dfrac{1}{12}$

$⇔(\dfrac{1}{24}-\dfrac{1}{30})x=\dfrac{1}{12}$

$⇔x=\dfrac{1}{12}:(\dfrac{1}{24}-\dfrac{1}{30})=10 \ \ \text{(nhận)}$

Vậy độ dài quãng đường Minh đến trường là $10km$

b) Độ dài quãng đường đi và về là: $10 .2 =20 (km)$

Số lít xăng xe máy ba bạn Minh sử dụng là:

$\dfrac{20.3,6}{100}=0,72(l)$

Số tiền ba bạn Minh tốn là:

$0,72.18700=13464 \ \ \text{(đồng)}$