\(x^2-2x+1< \left(x-1\right)\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

1/  

\(x^2-2x+1< \left(x-1\right)\left(x-4\right)\)

\(\Rightarrow x^2-2x+1< x^2-4x-x+4\)

\(\Rightarrow x^2-2x+1< x^2-5x+4\)

\(\Rightarrow x^2-x^2-2x+5x< 4-1\)

\(\Rightarrow3x< 3\)

\(\Rightarrow x< 1\)

\(\Rightarrow S=\left\{x\in R;x< 1\right\}\)

17 tháng 4 2019
https://i.imgur.com/JBHuggh.jpg
5 tháng 5 2018

a/ \(\dfrac{2x-3}{x+5}\ge2\) ( ĐKXĐ : \(x\ne-5\) )

\(\Rightarrow2x-3\ge2\left(x+5\right)\)

\(\Leftrightarrow2x-3\ge2x+10\)

\(\Leftrightarrow0x\ge13\) ( vô lí ) . Vậy bất phương trình đã cho vô nghiệm.

5 tháng 5 2018

Ôn tập: Bất phương trình bậc nhất một ẩnÔn tập: Bất phương trình bậc nhất một ẩnÔn tập: Bất phương trình bậc nhất một ẩn

20 tháng 6 2018

a,\(\Leftrightarrow9x^2+4x-3-9x^2-12x-4>0\)

\(\Leftrightarrow-8x-7>0\)

\(\Leftrightarrow-8x>7\)\(\Leftrightarrow x< -\dfrac{7}{8}\)

0 -7/8 (

20 tháng 6 2018

\(b,\Leftrightarrow\dfrac{4x^2-2\left(2x^2+3x\right)}{4}< \dfrac{x-1}{4}\)

\(\Leftrightarrow4x^2-4x^2-6x< x-1\)

\(\Leftrightarrow-6x-x< x-1\)

\(\Leftrightarrow-7x< -1\Leftrightarrow x>\dfrac{1}{7}\)

Vậy....

1/7 0 (

7 tháng 4 2017

a, Xét 2 trường hợp: x+1/9<0

                               2x-5<0

Tự làm nốt nhé, chuyển vế mà k bít làm thì mình bó tay.

b, Tương tự câu a, nhưng chọn 1 cái âm và 2 cái còn lại dương

VD: Xét 4x-1 âm, còn lại dương

TỰ LÀM NỐT ĐI, CHUYỂN VẾ NHÉ. BẤM NÚT ĐÚNG Ở PHÍA DƯỚI ĐẤY

13 tháng 9 2020

Xin phép bỏ biểu diễn trên trục :))

a) \(2x-1< 2\left(x-1\right)\)

\(\Leftrightarrow2x-1< 2x-2\)

\(\Leftrightarrow2x-2x< 1-2\)

\(0x< -1\)( vô lí )

Vậy bất phương trình vô nghiệm.

b) \(\frac{x-1}{3}-\frac{2+3x}{4}>\frac{1}{6}\)

\(\Leftrightarrow\frac{4\left(x-1\right)-3\left(2+3x\right)}{12}>\frac{2}{12}\)

\(\Leftrightarrow4x-4-6-9x>2\)

\(\Leftrightarrow-5x-10>2\)

\(\Leftrightarrow-5x>12\)

\(\Leftrightarrow x< \frac{-12}{5}\)

Vậy...........

13 tháng 5 2017

\(\Rightarrow6x-2-2x< 2x+1\)

\(\Rightarrow6x-2x-2x< 1+2\)

\(\Rightarrow2x< 3\)

\(\Rightarrow x< \dfrac{3}{2}\)

b)\(\Rightarrow4x-8\ge9x-6+4-2x\)

\(\Rightarrow4x-9x+2x\ge-6+4+8\)

\(\Rightarrow-3x\ge6\)

\(\Rightarrow x\le-2\)

17 tháng 4 2019

Cu văn lồn

1 tháng 5 2019

nhiều thế

a) \(\frac{5x-2}{2}\ge\frac{3-x}{3}\Leftrightarrow\frac{3\left(5x-2\right)}{6}\ge\frac{2\left(3-x\right)}{6}\Leftrightarrow15x-6\ge6-2x\Leftrightarrow x\ge\frac{12}{17}\)

0 [ 12/17

25 tháng 6 2018

\(1.\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\dfrac{|\sqrt{7}+1|-|\sqrt{7}-1|}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

\(3a.x+1-\dfrac{x-1}{3}< x-\dfrac{2x+3}{2}+\dfrac{x}{3}+5\)

\(\Leftrightarrow\dfrac{6\left(x+1\right)-2\left(x-1\right)}{6}< \dfrac{6x-3\left(2x+3\right)+2x+30}{6}\)

\(\Leftrightarrow6x+6-2x+2< 6x-6x-9+2x+30\)

\(\Leftrightarrow6x-2x-2x+6+2+9-30< 0\)

\(\Leftrightarrow2x-13< 0\)

\(\Leftrightarrow x< \dfrac{13}{2}\)

KL...............

\(b.5+\dfrac{x+4}{5}< x-\dfrac{x-2}{2}+\dfrac{x+3}{3}\)

\(\Leftrightarrow\dfrac{150+6\left(x+4\right)}{30}< \dfrac{30x-15\left(x-2\right)+10\left(x+3\right)}{30}\)

\(\Leftrightarrow150+6x+24< 30x-15x+30+10x+30\)

\(\Leftrightarrow6x-30x+15x-10x+150+24-30-30< 0\)

\(\Leftrightarrow-19x+114< 0\)

\(\Leftrightarrow x>6\)

KL..................

25 tháng 6 2018

Câu 4 :

Ta có :

\(A=\dfrac{3}{1-x}+\dfrac{4}{x}\)

\(=\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\)

Theo BĐT Bu - nhi a - cốp xki ta có :

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

\(\Leftrightarrow\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\ge\left(\sqrt{\dfrac{3\left(1-x\right)}{1-x}}+\sqrt{\dfrac{4x}{x}}\right)^2=\left(\sqrt{3}+2\right)^2=7+4\sqrt{3}\)

Dấu \("="\) xảy ra khi \(\dfrac{3}{\left(1-x\right)^2}=\dfrac{4}{x^2}\)

\(\Leftrightarrow3x^2=4x^2-8x+4\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Delta=64-16=48>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)

Vậy GTNN của\(A=7+4\sqrt{3}\) khi \(\left[{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)