Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1)
a) Xét phương trình hoành độ giao điểm: \(2x+3+m=3x+5-m\)
\(\Leftrightarrow x=3+m+m-5\Leftrightarrow x=2m-2\)
Để giao điểm của hai đường thẳng trên nằm trên trục tung thì \(2m-2=0\Leftrightarrow m=1\)
b) Do (d) // (d') nên (d) có phương trình \(y=-\frac{1}{2}x+b\)
Do (d) cắt trục hoành tại điểm có hoành độ x = 10 nên điểm (10;0) thuộc đường thẳng (d0.
Vậy thì \(0=-\frac{1}{2}.10+b\Leftrightarrow b=5\)
Vậy phương trình đường thẳng (d) là \(y=-\frac{1}{2}x+5\)
Bài 2)
a) Để (d1)//(d2) thì \(4m=3m+1\Leftrightarrow m=1\)
b) Để (d1)//(d2) thì \(4m\ne3m+1\Leftrightarrow m\ne1\)
Khi m = 2, ta có phương trình hoành độ giao điểm là:
\(8x-7=7x-7\Leftrightarrow x=0\)
Với \(x=0,y=-7\)
Vậy tọa độ giao điểm của (d1) và (d2) là (0; -7)
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}m+3+n=-3\\-2m-6+n=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+n=-9\\-2m+n=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-6\\n=-3\end{matrix}\right.\)
c: 3y-x-4=0
=>3y=x+4
\(\Leftrightarrow y=\dfrac{1}{3}x+\dfrac{4}{3}\)
Để hai đường cắt nhau thì m+3<>1/3
hay m<>-8/3
Pt hoành độ giao điểm:
\(\frac{1}{2}x^2=-x+m\Leftrightarrow x^2+2x-2m=0\)
\(\Delta'=1+2m>0\Rightarrow m>-\frac{1}{2}\)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-2m\end{matrix}\right.\)
\(x_1x_2+y_1y_2=5\)
\(\Leftrightarrow x_1x_2+\frac{1}{4}x_1^2x_2^2=5\)
\(\Leftrightarrow\left(x_1x_2\right)^2+4x_1x_2-20=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1x_2=-2+2\sqrt{6}\\x_1x_2=-2-2\sqrt{6}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2m=-2+2\sqrt{6}\\-2m=-2-2\sqrt{6}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\sqrt{6}-1\\m=\sqrt{6}+1\end{matrix}\right.\)
a: Đặt a=k; b=k'
=>(d): y=(a-3)x+b
Vì (d) đi qua A(1;2) và B(3;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-3+b=2\\3\left(a-3\right)+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\3a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=4\end{matrix}\right.\)
b: (d): y=(a-3)x+b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}b=1-\sqrt{2}\\\left(a-3\right)\cdot\left(1+\sqrt{2}\right)=\sqrt{2}-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=1-\sqrt{2}\\a=6-2\sqrt{2}\end{matrix}\right.\)
d: y-2x-1=0
nên y=2x+1(d1)
(d): y=(a-3)x+b
Để (d)//(d1) thì \(\left\{{}\begin{matrix}a-3=2\\b< >1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5\\b< >1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của (P) và (d) là :
\(x^2=2\left(m+3\right)x-m^2-3.\)
\(\Leftrightarrow x^2-2\left(m+3\right)x+m^2+3=0\left(1\right)\)
\(\Delta'=[-\left(m+3\right)]^2-m^2-3=m^2+6m+9-m^2-3=6m+6\)
Để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 ; x2 thì phương trình (1) có hai nghiệm phân biệt x1 x2.
\(\Rightarrow\Delta'>0\Leftrightarrow6m+6>0\Leftrightarrow m>-1\)
Theo vi ét ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m+3\right)\\x_1x_2=m^2+3\end{cases}}\)
Thay vào hệ thức : \(x_1+x_2-\frac{x_1x_2}{x_1+x_2}=\frac{57}{4}\)ta được.
\(2\left(m+3\right)-\frac{m^2+3}{2\left(m+3\right)}=\frac{57}{4}\Leftrightarrow\frac{4\left(m+3\right)^2-m^2-3}{2\left(m+3\right)}=\frac{57}{4}\)
\(\Leftrightarrow\frac{4m^2+24m+36-m^2-3}{2m+6}=\frac{57}{4}\Leftrightarrow\frac{3m^2+24m+33}{2m+6}=\frac{57}{4}\)
\(\Leftrightarrow12m^2+96m+132=114m+342\)\(\Leftrightarrow12m^2-18m-210=0\Leftrightarrow2m^2-3m-35=0\)
\(m_1=5\left(TM\right);m_2=-\frac{7}{2}\left(KTM\right)\)
Vậy \(m=5\).
1. B
2. B
3. C