Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a/ Dấu hiệu ở đây là thời gian làm bài ( tính theo phút ) của mỗi học sinh ( ai cũng làm được )
Có 30 giá trị. Có 6 giá trị khác nhau.
b/
Giá trị (x) 5 7 8 9 10 14
Tần số (n) 4 3 8 8 4 3 N= 30
c) Tính Trung bình cộng:
_
X = 4.5+7.3+8.8+9.8+10.4+14.3 / 30= 259:30 = 8,6 phút
Câu 1
P(x)=0=> x=3
Q(y)=0=> y=5/2
Câu 2
a/ Xét hai tam giác vuông ABE và HBE có
BE chung là cạnh huyền
^ABE=^HBE (BE là phân giác ^ABC)
=> tam giác ABE = tam giác HBE ( hai tam giác xuông có cạnh huyền và 1 góc nhọn tương ứng bằng nhau thì băng nhau)
b/ Ta có tg ABE= tg HBE (c/m câu a) => BA=BH => tam giác ABH cân tại H
BE là phân giác ^ABC (đề bài)
=> BE là trung trực của AH (trong tam giác cân đường phân giác của góc ở đỉnh đồng thời là đường cao, đường trung tuyến và đường trung trực)
c/ Xét hai tam giác vuông AKE và tam giác vuông HCE có
AE=HE (do tg ABE=tg HBE)
^AEK=^HEC (góc đối đỉnh)
=> tg AKE=tg HCE (tam giác vuông có cạnh góc vuông và góc nhon tương ứng bằng nhau)
=> EK=EC
d/ Xét tam giác vuông AKE có AE<EK (trong tam giác vuông cạnh huyền là cạnh có độ dài lớn nhất)
mà EK=EC
=> AE<EC
Câu 1:
P(x) = 3 - x = 0 <=> x = 3
Vậy 3 là nghiệm của P(x)
Q(y) = 2y - 5 = 0 <=> 2y = 5 <=> y = 5/2 = 2.5
Vậy 2.5 là nghiệm đa thức Q(y)
Làm đại thôi, chán hình rồi )): nghề của con.
Câu 1 :
\(A\left(x\right)=3x^3+2x+3x^2-6\)
\(B\left(x\right)=2x^2-3x^3-7x+6\)
a, Sắp xếp : \(A\left(x\right)=3x^3+3x^2+2x-6\)
\(B\left(x\right)=-3x^3+2x^2-7x+6\)
b, Ta có : \(A\left(x\right)+B\left(x\right)=\left(3x^3+3x^2+2x-6\right)+\left(-3x^3+2x^2-7x+6\right)\)
\(=3x^3+3x^2+2x-6-3x^3+2x^2-7x+6\)
\(=5x^2-5x\)
\(A\left(x\right)-B\left(x\right)=\left(3x^3+3x^2+2x-6\right)-\left(-3x^3+2x^2-7x+6\right)\)
\(=3x^3+3x^2+2x-6+3x^3-2x^2+7x-6\)
\(=6x^3+x^2+9x-12\)
c, Đặt \(5x^2-5x=0\)
\(\Leftrightarrow x\left(5x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy rút ra đc ...tự lm bn nhé!...
Câu 2 :
a, \(4x+9=0\Leftrightarrow x=-\frac{9}{4}\)
Vậy nghiệm đa thức trên la -9/4
b, \(3x^2+4x=0\Leftrightarrow x\left(3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{4}{3}\end{cases}}\)
Vậy nghiệm đa thức là 0;-4/3
a,AD ĐL pytago vào \(\Delta ABC\)vuông tại A có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=BC^2-AB^2\)
\(\Rightarrow AC^2=10^2-6^2\)
\(\Rightarrow AC^2=64\)
\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)
Xét \(\Delta BCD\)có: A là trung điểm của BD
K là trung điểm của BC
AC giao DK tại M
=>M là trọng tâm của \(\Delta BCD\)
\(\Rightarrow MC=\frac{2}{3}AC=\frac{2}{3}.8=5,3\left(cm\right)\)
b.Ta có:\(AB< AC< BC\)
\(\Rightarrow\widehat{BAC}>\widehat{ABC}>\widehat{ACB}\)
c.Ta có:\(\widehat{A}=90^o\)và A là trung điểm của BD
=>AC là đường trung trưc của BD
=>CB=CD
=>\(\Delta BCD\)cân tại C
d. bạn tự cm \(\Delta ABC=\Delta ADC\left(c.g.c\right)\)
\(\Rightarrow\widehat{C_1}=\widehat{C_2}\)(2 g.t.ư) (1)
Q là ttruc của AC=>QA=QC
=> tg AQC cân tại Q
=>\(\widehat{A_1}=\widehat{C_1}\)(2)
Từ (1) và (2)=>\(\widehat{C_1}=\widehat{A_1}\)
Mà 2 góc này ở VT SLT=>AQ//BC(3)
Lại có:A là trung điểm của BD(4)
Từ (3) và (4) => AQ là đường trb của tg BCD
=>Q là tđ củaDC
=>BQ là đường ttuyen của tgBCD
Mà M là trọng tâm của tg BCD
=> thẳng hàng
2:Trọng tâm(điểm này được gọi là G)
3:Tham khảo:https://giaibaitap123.com/giai-toan-lop-7-tap-2/bai-9-nghiem-cua-da-thuc-mot-bien/
5:Đối với tam giác thường:
CC
CGC
GCG
Đối với tam giac vuông là:
CHGN
6:Tham khảo:
https://hanghieugiatot.com/cach-chung-minh-duong-trung-truc-lop-7
Câu 1: Để xác định bậc của một đa thứ , bạn cần làm là tìm số mũ lớn nhất trong đa thức đó
Câu 2: Giao của 3 đường trung tuyến được gọi là trọng tâm
Câu 3: Nghiệm của đa thức là a nếu tại x=a đa thứ P(x) có giá thị bằng 0=> để tìm nghiệm của đa thức 1 biến, hãy cho đa thức đó bằng 0 và giải như cách giải phương trình 1 ẩn
Câu 4: Hai đa thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phân biến. Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến. Các số khác 0 được gọi là những đơn thức đồng dạng
Câu 5:
* Đối với tam giác thường
+ Trường hợp cạnh-cạnh-cạnh
+Trường hợp cạnh-góc-cạnh
+Trường hợp góc-cạnh-góc
*Đối với tam giác vuông
+ Trường hợp cạnh góc vuông-cạnh góc vuông
+Trường họp cạnh góc vuông- góc nhọn
+ Trường hợp cạnh huyền-góc nhọn
Câu 6:
Phương pháp 1: Chúng ta phải phải chứng minh rằng d\(\perp\)AB tại ngay trung điểm của AB
Phương pháp 2: Chứng minh rằng 2 điểm trên d cách đề 2 điểm A và B
Phương pháp 3: Dùng tính chất đường trung tuyến , đường cao
Phương pháp 4: Áp dụng tính chất đối xúng của trục
Phương pháp 5: Áp dụng tính chất nối tâm của 2 đường tròn cắt nhau ở 2 điểm