Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Số cách chọn ba học sinh bất kì là: \(C_{40}^3 = 9880\)
b) Số cách chọn ba học sinh gồm 1 nam và 2 nữ là: \(C_{25}^1.C_{15}^2 = 2625\)
c) Số cách chọn 3 học sinh trong đó không có học sinh nam là: \(C_{15}^3 = 455\)
Số cách chọn 3 học sinh trong đó có ít nhất một học sinh nam là: \(9880 - 455 = 9425\)
Ta có: n(Ω)=C515=3003�(Ω)=�155=3003
Gọi A là biến cố "Trong 5 học sinh được chọn có ít nhất 4 học sinh nữ".
Ta có thể chọn 4 nữ và 1 nam hoặc chon 5 nữ.
Suy ra n(A)=C49.C16+C59=882�(�)=�94.�61+�95=882
Xác suất của biển cố A là: P(A)=8823003=42143≈0,29
Ta có: n(Ω)=C515=3003�(Ω)=�155=3003
Gọi A là biến cố "Trong 5 học sinh được chọn có ít nhất 4 học sinh nữ".
Ta có thể chọn 4 nữ và 1 nam hoặc chon 5 nữ.
Suy ra n(A)=C49.C16+C59=882�(�)=�94.�61+�95=882
Xác suất của biển cố A là: P(A)=8823003=42143≈0,29
a: Số cách chọn là: \(C^3_{25}=2300\left(cách\right)\)
b: Số cách chọn là: \(C^1_{15}\cdot C^2_{24}=4140\left(cách\right)\)
\(\Omega \) là tập tất cả 6 học sinh trong 12 học sinh. Vậy \(n\left( \Omega \right) = C_{12}^6 = 924\).
Gọi C là biến cố: “Có 3 học sinh nam và 3 học sinh nữ”. Có \(C_7^3\) cách chọn chọn 3 học sinh nam và \(C_5^3\) cách chọn 3 học sinh nữ. Theo quy tắc nhân, ta có \(C_7^3.C_5^3 = 350\) cách chọn 3 học sinh nam và 3 học sinh nữ tức là \(n\left( C \right) = 350\).Vậy \(P\left( C \right) = \frac{{350}}{{924}} \approx 0,3788\).
a: Số cách chọn là \(C^3_{18}=816\left(cách\right)\)
b: SỐ cách chọn là 7*6*5=210 cách
c: SỐ cách chọn là 7*5+5*6+7*6=107 cách
Q(x)=x^5(3x-5)^7
Số hạng chứa x^10 sẽ tương ứng với số hạng chứa x^5 trong (3x-5)^7
SHTQ là: \(C^k_7\cdot\left(3x\right)^{7-k}\cdot\left(-5\right)^k=C^k_7\cdot3^{7-k}\cdot\left(-5\right)^k\cdot x^{7-k}\)
Số hạng chứa x^5 tương ứng với 7-k=5
=>k=2
=>Số hạng cần tìm là: 127575x^10
TH1 , 1 học sinh tốt , 4 học sinh còn lại
\(C^1_7\times\left(C_{15}^4-C_{10}^4-C_5^4\right)\)
TH2 , 2 học sinh tốt , 3 học sinh còn lại
\(C_7^2\times\left(C_{15}^3-C_{10}^3-C_5^3\right)\)
TH3, 3 học sinh tốt , 2 học sinh còn lại
\(C_7^3\times\left(C_{15}^2-C_{10}^2-C_5^2\right)\)
TH4 , 4 học sinh tốt , 1 học sinh còn lại
\(C_7^4\times C_{15}^1\)
TH5 , 5 học sinh tốt
\(C_7^5\)
=> Số thỏa mãn là : \(17171\) cách chọn
Chọn ngẫu nhiên 5 bạn bất kỳ: \(C^5_{13}\)
Chọn ngẫu nhiên 5 bạn lớp 12A và 12B: \(C^5_{10}\)
Chọn ngẫu nhiên 5 bạn lớp 12B và 12C: \(C^5_7\)
Chọn ngẫu nhiên 5 bạn lớp 12A và 12C: \(C^5_9\)
Vậy số cách chọn là: \(C^5_{13}-C^5_{10}-C^5_7-C^5_9\)
Chọn 5 bạn bất kì: \(C_{13}^5\) cách
Chọn 5 bạn chỉ thuộc 1 lớp (có đúng 1 trường hợp là chọn từ 12A): \(C_6^5\) cách
Chọn 5 bạn gồm cả 12A và 12B: \(C_{10}^5-C_6^5\) cách
Chọn 5 bạn gồm cả 12A và 12C: \(C_9^5-C_6^5\) cách
Chọn 5 bạn gồm cả 12B và 12C: \(C_7^5\) cách
Vậy số cách chọn 5 bạn có đủ 3 lớp là:
\(C_{13}^5-\left(C_{10}^5+C_9^5+C_7^5-2C_6^5\right)-C_6^5\)