K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2018

1/

a, \(4x^2+36xy+81y^2=\left(2x+9y\right)^2\)

b, \(12y+\frac{9}{100}y^2+400=\left(\frac{3}{10}y+20\right)^2\)

2/ 

\(2bc+b^2+c^2-a^2=\left(b+c\right)^2-a^2=\left(a+b+c\right)\left(b+c-a\right)=2p\left(b+c-a\right)\) (1)

Ta có: a+b+c=2p => b+c=2p-a (2)

Thay (2) và (1) ta có:

\(2p\left(2p-a-a\right)=2p\left(2p-2a\right)=4p\left(p-a\right)\) (đpcm)

3/

Gọi 2 số tự nhiên chẵn là 2k và 2k+2 (k thuộc N)

Theo bài ra ta có: \(\left(2k+2\right)^2-\left(2k\right)^2=36\)

=> \(\left(2k+2-2k\right)\left(2k+2+2k\right)=36\)

=>\(2\left(4k+2\right)=36\)

=>\(8k+4=36\)

=>\(8k=32\)

=> k = 4

=> \(2k=8;2k+2=10\)

Vậy...

4 tháng 7 2018

2/

Ta có \(a+b+c=2p\)<=> \(b+c=2p-a\)

và \(2bc+b^2+c^2-a^2\)

\(\left(b+c\right)^2-a^2\)

\(\left(b+c-a\right)\left(b+c+a\right)\)

\(2p\left(2p-a-a\right)\)

\(2p\left(2p-2a\right)\)

\(4p\left(p-a\right)\)(đpcm)

12 tháng 6 2015

Bài 2 : 

a+b=5 <=> ( a+b)2=52

          <=> a2+ab+b2=25

         Hay : a2+1+b2=25

               <=> a2+b2=24

Bài 4 : Gọi 2 số tự nhiên lẻ liên tiếp lần lượt là : a, a+2 ( a lẻ , a thuộc N 0

 Theo bài ra , ta có : ( a+2)2-a2= 56

                           <=> a2+4a+4-a2=56

                             <=> 4a=56-4

                              <=> 4a=52

                                <=> a=13

Vậy 2 số tự nhiên lẻ liên tiếp là : 13; 15

 

10 tháng 10 2019

gọi 2 số đó là a; a + 2 (a thuộc N; a chẵn)

có a^2 - (a + 2)^2 = 68

=> a^2 - a^2 - 4a - 4 = 68

=> -4a - 4 = 68

=> -4a = 72

=> a = 18

=> a + 2 = 20

19 tháng 7 2015

tìm ba số nha tự nhiên nha mấy bạn ^^

25 tháng 7 2019

a+b+c = 2p => 4p = 2(a+b+c); p=(a+b+c)/2

VP = 4p(p-a) = 2(a+b+c)(\(\frac{a+b+c}{2}-a\))

= \(2\left(a+b+c\right)\left(\frac{a+b+c-2a}{2}\right)\)

=\(2\left(a+b+c\right)\cdot\frac{b+c-a}{2}=\left(a+b+c\right)\left(b+c-a\right)\)

\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)

\(=2bc+b^2+c^2-a^2\) = VT (đpcm)

Y
4 tháng 6 2019

\(2bc+b^2+c^2-a^2\)

\(=\left(b+c\right)^2-a^2\)

\(=\left(a+b+c\right)\left(b+c-a\right)\)

\(=2p\left(a+b+c-2a\right)\)

\(=2p\left(2p-2a\right)=4p\left(p-a\right)\)

4 tháng 6 2019

biến đổi vế phải ta được:

4p(p -a ) = 4p\(^2\)-4pa

=(2p)\(^2\)-2p.2a

=(a+b+c)\(^2\)-2a(a+b+c)

=\(a^2+b^2+c^2+2ab+2ac+2bc\)-\(2a^2-2ab-2ac\)

=\(2bc+b^2+c^2-a^2\)=vế trái (đpcm)

1:

a chia 5 dư 3 nên a=5k+3

b chia 5 dư 2 nên b=5c+2

a*b=(5k+3)(5c+2)

=25kc+10k+15c+6

=5(5kc+2k+3c+1)+1 chia 5 dư 1

2:

Gọi ba số liên tiếp là a;a+1;a+2

Theo đề, ta có: 

(a+1)(a+2)-a(a+1)=50

=>a^2+3a+2-a^2-a=50

=>2a+2=50

=>2a=48

=>a=24

=>Ba số cần tìm là 24;25;26