Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
- a,(2+xy)^2=4+4xy+x^2y^2
- b,(5-3x)^2=25-30x+9x^2
- d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1
a) Ta có: \(VT=\left(x-y-z\right)^2\)
\(=\left(x-y-z\right)\left(x-y-z\right)\)
\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)
\(=x^2+y^2+z^2-2xy+2yz-2xz\)
=VP(đpcm)
b) Ta có: \(VT=\left(x+y-z\right)^2\)
\(=\left(x+y-z\right)\left(x+y-z\right)\)
\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)
\(=x^2+y^2+z^2+2xy-2yz-2zx\)
=VP(đpcm)
c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)
Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4\)
=VP(đpcm)
d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=x^5+y^5\)
=VP(đpcm)
a, b, nhân vào là ra à
c, nghe cứ là lạ
d, cũng nhân là ra hà
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)
\(P=-2\left(-1\right)\cdot2\left(-1\cdot2+2\right)=4\cdot0=0\)
Vậy ko đáp án nào thỏa mãn đề
Bài 1: Thực hiện phép tính
a) 3x(2x2 - 5x + 9) = \(6x^3-15x^2+27x\)
b) 5x(x2-xy+1) = \(5x^3-5xy+5x\)
c) -2/3x2y(3xy-x2+y) = \(-2x^3y^2+\dfrac{2}{3}x^4y-\dfrac{2}{3}x^2y^2\)
2) Thực hiện phép tính
a) (5x-2y) (x2-xy+1) = \(5x^3+5x-7y-2x^3y+2xy^2\)
b) (x+3y)(x2-2xy+y) = \(x^3-x^2y+xy+6xy^2+y^2\)
c) (3x-5y) (4x+ 7y) = \(12x^2-xy-35y^2\)
Bài 3: Rút gọn các biểu thức sau(bằng cách khai triển hằng đẳng thức):
a) (x+y)2+(x-y)2
= \(x^2+2xy+y^2+x^2-2xy+y^2\)
= \(\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)
= \(2x^2+2y^2=2\left(x^2+y^2\right)\)
b) (x+2)(x-2)-(x-3)(x+1)
= \(x^2-4\) - \(\left(x^2-2x-3\right)\)= \(x^2-4-x^2+2x+3\)
= \(\left(x^2-x^2\right)+2x+\left(-4+3\right)\)=\(2x-1\)
c) (x-2)(x+2)-(x-2)2
=>\(x^2-4-\left(x^2-2.x.2+2^2\right)=x^2-4-x^2-4x+4=\left(x^2-x^2\right)+\left(-4+4\right)-4x=-4x\)
d) (2x+y)(4x2-2xy+y2)-(2x-y)(4x2+2xy+y2)
= \(8x^3+y^3-\left(8x^3-y^3\right)\)
= \(8x^3+y^3-8x^3+y^3\)
= \(\left(8x^3-8x^3\right)+\left(y^3+y^3\right)\)= \(2y^3\)
\(=\dfrac{y\left(x^2+2xy+y^2\right)}{2x^2+2xy-xy-y^2}\)
\(=\dfrac{y\left(x+y\right)^2}{\left(x+y\right)\left(2x-y\right)}=\dfrac{y\left(x+y\right)}{2x-y}\)
\(=\dfrac{xy+y^2}{2x-y}\)
A
Chọn B